• 제목/요약/키워드: Illumination Invariant

검색결과 74건 처리시간 0.025초

An Improved Saliency Detection for Different Light Conditions

  • Ren, Yongfeng;Zhou, Jingbo;Wang, Zhijian;Yan, Yunyang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제9권3호
    • /
    • pp.1155-1172
    • /
    • 2015
  • In this paper, we propose a novel saliency detection framework based on illumination invariant features to improve the accuracy of the saliency detection under the different light conditions. The proposed algorithm is divided into three steps. First, we extract the illuminant invariant features to reduce the effect of the illumination based on the local sensitive histograms. Second, a preliminary saliency map is obtained in the CIE Lab color space. Last, we use the region growing method to fuse the illuminant invariant features and the preliminary saliency map into a new framework. In addition, we integrate the information of spatial distinctness since the saliency objects are usually compact. The experiments on the benchmark dataset show that the proposed saliency detection framework outperforms the state-of-the-art algorithms in terms of different illuminants in the images.

조명 변이에 강인한 하이브리드 얼굴 인식 방법 (A Robust Hybrid Method for Face Recognition Under Illumination Variation)

  • 최상일
    • 전자공학회논문지
    • /
    • 제52권10호
    • /
    • pp.129-136
    • /
    • 2015
  • 본 논문에서는 조명 변이에 강인하게 동작 할 수 있는 하이브리드 얼굴 인식 방법을 제안한다. 이를 위해, 서로 다른 특성을 가진 조명 불변 특징 추출 방법으로부터 판별력 있는 특징들을 추출한다. 개별 방법들의 장점들을 효과적으로 활용하기 위해, 판별 거리 척도를 이용하여 각 특징들의 분별력을 측정하여 분별력이 높은 특징들로만 복합 특징을 구성하여 얼굴 인식에 사용한다. Multi-PIE, Yale B, AR, yale database들에 대한 실험 결과, 제안한 방법은 모든 database에 대해 개별 조명 불변 특징 방법들보다 우수한 인식 성능을 보여 주었다.

Shadow and Highlight Invariant Color Models

  • 이자용;강훈
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2005년도 추계종합학술대회
    • /
    • pp.557-560
    • /
    • 2005
  • The color of objects varies with changes in illuminant color and viewing conditions. As a consequence, color boundaries are influenced by a large variety of imaging variables such as shadows, highlights, illumination, and material changes. Therefore, invariant color models are useful for a large number of applications such as object recognitions, detections, and segmentations. In this paper, we propose invariant color models. These color models are independent of the object geometry, object pose, and illumination. From these color models, color invariant edges are derived. To show the validity of the proposed invariant color models, some examples are given.

  • PDF

밝기 변화에 강인한 특징 기술자를 이용한 고품질 HDR 동영상 합성 (Robust HDR Video Synthesis Using Illumination Invariant Descriptor)

  • ;이철
    • 한국방송∙미디어공학회:학술대회논문집
    • /
    • 한국방송∙미디어공학회 2017년도 하계학술대회
    • /
    • pp.83-84
    • /
    • 2017
  • We propose a novel high dynamic range (HDR) video synthesis algorithm from alternatively exposed low dynamic range (LDR) videos. We first estimate correspondences between input fames using an illumination invariant descriptor. Then, we synthesize an HDR frame with the weights computed to maximize detail preservation in the output HDR frame. Experimental results demonstrate that the proposed algorithm provides high-quality HDR videos without noticeable artifacts.

  • PDF

다양한 조명 환경에서의 실시간 사용자 검출을 위한 압축 영역에서의 색상 조절을 사용한 얼굴 검출 방법 (Face detection in compressed domain using color balancing for various illumination conditions)

  • 민현석;이영복;신호철;임을균;노용만
    • 한국HCI학회:학술대회논문집
    • /
    • 한국HCI학회 2009년도 학술대회
    • /
    • pp.140-145
    • /
    • 2009
  • 본 논문에서는 압축 영역에서 동작하는 조명 환경 변화에 강인한 얼굴 검출 방법을 제안한다. 기존 이미지 처리를 이용한 얼굴 검출 방법들은 주로 픽셀 기반 영역에서 이루어져 왔다. 그러나 컴퓨팅 파워와 저장 공간이 제한적인 로봇 환경에는 픽셀 기반 처리가 적합하지 않다. 또한 조명 환경의 변화는 안정된 얼굴 검출을 위해 해결되어야 하는 문제로 인식되어 왔다. 이러한 문제점들을 해결하기 위하여 본 논문에서는 압축 영역에서의 조명 효과 보상과 색 온도 변환을 이용한 색상 정보 조절 과정을 사용한 얼굴 검출 방법을 제안한다. 제안된 방법은 색상 정보 조절을 통하여 다양한 조명 환경에서 기존 방법에 비해 강인한 얼굴 검출을 보여준다.

  • PDF

조명 영향 및 회전에 강인한 물체 인식 (Illumination and Rotation Invariant Object Recognition)

  • 김계경;김재홍;이재연
    • 한국콘텐츠학회논문지
    • /
    • 제12권11호
    • /
    • pp.1-8
    • /
    • 2012
  • 최근 산업 현장에서 자동화 시스템 도입에 대한 필요성 증가로 인하여 물체 인식에 대한 기술의 활용도가 점차 증가되고 있다. 그러나, 실제 현장에서 조명의 영향은 물체 주변에 잡음이나 그림자를 발생시켜 물체 영역을 정확히 검출하거나 인식하는 것을 어렵게 만든다. 본 논문에서는 조명 영향으로 나타나는 잡음이나 그림자 효과를 최소화하기 위하여 영상 필터와 적응적 이진화 방법을 이용하여 물체의 형태 정보가 보존된 물체 영역을 검출하도록 하였다. 또한, 인식 대상 물체의 종류와 회전각에 따라 물체 고유 클래스를 정의한 다음 신경망을 이용하여 물체를 인식함으로써 회전에 강인한 물체 인식을 할 수 있도록 하였다. 제안된 물체 인식 방법에 대한 타당성을 검증하기 위하여 조명 조건을 달리하면서 획득한 ETRI 데이터베이스 16,848장을 대상으로 인식 실험해 본 결과 99.86%의 물체 인식률 및 0.03초의 인식 속도를 얻을 수 있었다.

Illumination Invariant Face Tracking on Smart Phones using Skin Locus based CAMSHIFT

  • Bui, Hoang Nam;Kim, SooHyung;Na, In Seop
    • 스마트미디어저널
    • /
    • 제2권4호
    • /
    • pp.9-19
    • /
    • 2013
  • This paper gives a review on three illumination issues of face tracking on smart phones: dark scenes, sudden lighting change and backlit effect. First, we propose a fast and robust face tracking method utilizing continuous adaptive mean shift algorithm (CAMSHIFT) and CbCr skin locus. Initially, the skin locus obtained from training video data. After that, a modified CAMSHIFT version based on the skin locus is accordingly provided. Second, we suggest an enhancement method to increase the chance of detecting faces, an important initialization step for face tracking, under dark illumination. The proposed method works comparably with traditional CAMSHIFT or particle filter, and outperforms these methods when dealing with our public video data with the three illumination issues mentioned above.

  • PDF

Invariant-Feature Based Object Tracking Using Discrete Dynamic Swarm Optimization

  • Kang, Kyuchang;Bae, Changseok;Moon, Jinyoung;Park, Jongyoul;Chung, Yuk Ying;Sha, Feng;Zhao, Ximeng
    • ETRI Journal
    • /
    • 제39권2호
    • /
    • pp.151-162
    • /
    • 2017
  • With the remarkable growth in rich media in recent years, people are increasingly exposed to visual information from the environment. Visual information continues to play a vital role in rich media because people's real interests lie in dynamic information. This paper proposes a novel discrete dynamic swarm optimization (DDSO) algorithm for video object tracking using invariant features. The proposed approach is designed to track objects more robustly than other traditional algorithms in terms of illumination changes, background noise, and occlusions. DDSO is integrated with a matching procedure to eliminate inappropriate feature points geographically. The proposed novel fitness function can aid in excluding the influence of some noisy mismatched feature points. The test results showed that our approach can overcome changes in illumination, background noise, and occlusions more effectively than other traditional methods, including color-tracking and invariant feature-tracking methods.

컬러 불변 특징과 광역 특징을 갖는 확장 SURF(Speeded Up Robust Features) 알고리즘 (Extended SURF Algorithm with Color Invariant Feature and Global Feature)

  • 윤현섭;한영준;한헌수
    • 대한전자공학회논문지SP
    • /
    • 제46권6호
    • /
    • pp.58-67
    • /
    • 2009
  • 대응점 정합은 컴퓨터 비전에서 중요한 작업 중에 하나지만 스케일, 조명, 시점이 변한 환경에서 대응점을 찾는 과정은 매우 어렵다. 대응점 정합 알고리즘인 SURF(Speeded Up Robust Features) 기법은 SIFT(Scale Invariant Feature Transform) 기법에 비해 정합 속도가 매우 빠르고 비슷한 정합 성능을 보여 널리 사용되고 있다. 하지만 SURF 기법은 흑백 영상과 지역 공간정보를 사용하기 때문에 유사한 패턴이 존재하는 영상에서 대응점의 정합 성능이 매우 떨어진다. 이런 문제점을 해결하기 위해 본 논문에서는 강인한 컬러 특징 정보와 광역적 특징 정보를 이용하는 확장 SURF 알고리즘을 제안한다. 제안하는 알고리즘은 비슷한 패턴이 존재하더라도 색상정보과 광역 공간 정보를 추가로 사용되기 때문에 대응점 매칭 성능을 크게 향상시킨다. 본 논문에서는 제안하는 방법의 우수성을 조명과 시점이 변화하고 유사한 패턴들을 갖는 영상들에 적용하여 기존의 방법들과 비교 실험함으로서 입증하였다.

지능형 자동차를 위한 조명 변화에 강인한 도로표지판 검출 및 인식 (An Illumination Invariant Traffic Sign Recognition in the Driving Environment for Intelligence Vehicles)

  • 이태우;임광용;배건태;변혜란;최영우
    • 정보과학회 논문지
    • /
    • 제42권2호
    • /
    • pp.203-212
    • /
    • 2015
  • 본 논문은 도로주행 영상에서 도로표지판을 인식하는 방법을 제안한다. 지능형 차량에서 얻어지는 도로표지판 영상은 일반적인 사물 영상과는 다른 두 가지 특징이 있다. 첫째는 대상이 되는 사물들은 종류가 제한적이고 형태가 단순한 도형인 경우가 대부분이다. 둘째는 일반적인 도로주행 영상은 다양한 조명 환경과 날씨 상태로 인해서 선명한 영상을 취득하기 어려운 점이다. 본 논문에서는 조명 변화가 심한 도로주행 영상에 대해서 효과적으로 특징을 추출하기 위해서 Modified Census Transform(MCT)을 개선한 특징추출 방법을 제안한다. 추출된 특징들은 히스토그램으로 쌓여지고 영상 전반에 걸쳐 아주 고차원의 기술자(Descriptor)로 변환되며, 변환된 수많은 기술자들은 가우시안 혼합 모델(Gaussian Mixture Model)을 활용한 Fisher-vector 방법에 의해서 저차원으로 변형하여 특징으로 사용한다. 본 논문에서 제안하는 방법은 일반적인 표지판 인식 방법에 비해서 조명변화에 강한 검출 결과를 보여주었으며, 실시간 검출 및 인식도 가능하였다.