• Title/Summary/Keyword: Ignition quality

Search Result 128, Processing Time 0.022 seconds

A Study on the Prediction of the Cetane Number of Diesel Fuels from the Carbon Types Structural Compositions by 13C-Nuclear Magnetic Resonance Spectroscopy (13C-NMR에 의해 결정된 탄소 유형별 구조적 조성으로부터 디이젤 연료의 세탄가의 예측에 관한 연구)

  • Choi, Ju-Hwan;Chun, Yong-Jin;Choi, Ung-Su;Choi, Young-Sang;Kwon, Oh-Kwan
    • Applied Chemistry for Engineering
    • /
    • v.4 no.4
    • /
    • pp.709-714
    • /
    • 1993
  • The cetane number is a measure of ignition quality, specifically ignition delay, of diesel fuel. It is an engine measure of kinetic phenomena. The ignition quality such as kinetic behavior does correlate with the molecular structure, the carbon type structural composition. In fact, we use the group additivity rule to dissect the molecular structures and predict cetane number. In this study, the use of $^{13}C-Nuclear$ Magnetic Resonance spectroscopic measuring the molecular structure and group additivity rule at different diesel fuels, whose cetane numbers were determined on a number of standard cetane rating engines is proposed to predict cetane numbers that relate the carbon type structural composition. The effect of the molecular structures on the cetane numbers has been studied.

  • PDF

A Study on the Combustion of Blended Fuel Oil in a Diesel Engine for Small-Sized Fishing Boat (소형 어선용 디이젤 기관의 혼합연료유 연소에 관한 연구)

  • Go, Dae-Gwon;An, Su-Gil
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.23 no.2
    • /
    • pp.72-79
    • /
    • 1987
  • In this paper, an investigation of the property of blended fuel oil, combustion characteristics and engine performance was made, in case blended fuel oil(light oil+heavy oil) was used in a home-made precombustion diesel engine for small-sized fishing boat. The results may be summarized as follows: 1. The specific gravity was linearly increased in accordance with the increase in heavy oil ratio in blended fuel oil, and the relationship between viscosity and temperature was coincided with the formula of Walther-ASTM, and the CCAI, the ignition quality index, was increased nearly as a straight line of the gradient 1.0. 2. The ignition delay was slightly increased below 810 of CCAI(blending ratio to be 60% of heavy oil), but remarkably increased above 810 of CCAI. Therefore, it was considered that the practicable value of CCAI, ignition quality of blended fuel oil, was more than 810. 3. The maximum combustion pressure was increased until blending ratio of heavy oil was raised up to 40%. On the contrary, it came to be decreased at that ratio, with smoke emissions remarkably increasing above 60%. Therefore, it was found in this experiment that the best practicable limit of heavy oil blending ratio was around 50% for saving fuel costs with least smoke emissions.

  • PDF

A Study on the Combustion of Blended Fuel Oil in a Diesel Engine for Small-Sized Fishing Boat (소형 어선용 디이젤 기관의 혼합연료유 연소에 관한 연구)

  • Dae-Kwon Ko;Soo-Kil Ahn
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.23 no.2
    • /
    • pp.26-26
    • /
    • 1987
  • In this paper, an investigation of the property of blended fuel oil, combustion characteristics and engine performance was made, in case blended fuel oil(light oil+heavy oil) was used in a home-made precombustion diesel engine for small-sized fishing boat. The results may be summarized as follows: 1. The specific gravity was linearly increased in accordance with the increase in heavy oil ratio in blended fuel oil, and the relationship between viscosity and temperature was coincided with the formula of Walther-ASTM, and the CCAI, the ignition quality index, was increased nearly as a straight line of the gradient 1.0. 2. The ignition delay was slightly increased below 810 of CCAI(blending ratio to be 60% of heavy oil), but remarkably increased above 810 of CCAI. Therefore, it was considered that the practicable value of CCAI, ignition quality of blended fuel oil, was more than 810. 3. The maximum combustion pressure was increased until blending ratio of heavy oil was raised up to 40%. On the contrary, it came to be decreased at that ratio, with smoke emissions remarkably increasing above 60%. Therefore, it was found in this experiment that the best practicable limit of heavy oil blending ratio was around 50% for saving fuel costs with least smoke emissions.

EFFECT OF VALVE TIMING AND LIFT ON FLOW AND MIXING CHARACTERISTICS OF A CAI ENGINE

  • Kim, J.N.;Kim, H.Y.;Yoon, S.S.;Sa, S.D.;Kim, W.T.
    • International Journal of Automotive Technology
    • /
    • v.8 no.6
    • /
    • pp.687-696
    • /
    • 2007
  • To increase the reliability of auto-ignition in CAI engines, the thermodynamic properties of intake flow is often controlled using recycled exhaust gases, called internal EGR. Because of the internal EGR influence on the overall thermodynamic properties and mixing quality of the gases that affect the subsequent combustion behavior, optimizing the intake and exhaust valve timing for the EGR is important to achieve the reliable auto-ignition and high thermal efficiency. In the present study, fully 3D numerical simulations were carried out to predict the mixing characteristics and flow field inside the cylinder as a function of valve timing. The 3D unsteady Eulerian-Lagrangian two-phase model was used to account for the interaction between the intake air and remaining internal EGR during the under-lap operation while varying three major parameters: the intake valve(IV) and exhaust valve(EV) timings and intake valve lift(IVL). Computational results showed that the largest EVC retardation, as in A6, yielded the optimal mixing of both EGR and fuel. The IV timing had little effect on the mixing quality. However, the IV timing variation caused backflow from the cylinder to the intake port. With respect to reduction of heat loss due to backflow, the case in B6 was considered to present the optimal operating condition. With the variation of the intake valve lift, the A1 case yielded the minimum amount of backflow. The best mixing was delivered when the lift height was at a minimum of 2 mm.

Vertical Distribution of Persistent Heavy metals in Core Sediments from Upo Wetland (자연습지 우포늪 퇴적물의 연도별 잔류성 중금속 축적도)

  • Lee, Chan Won;Boo, Min Ho;Jeon, Hong Pyo;Lim, Kyung Won;Kim, Ki Ho
    • Journal of Wetlands Research
    • /
    • v.10 no.3
    • /
    • pp.27-35
    • /
    • 2008
  • Sediment cores were obtained from Upo and Mokpo in Upo Wetland and core samples were divided by depth into 20 ~ 21 subsamples. The heavy metal concentrations of Fe, Mn, Zn, AS, Cu, Cd, Ni, Pb, and Cr in the sediments of each depth were determined by ICP-MS. The texture of sediemnts from Upo Wetland appeared to be clayey silt with average grain size of $7.52{\sim}11.15{\mu}m$ for physical properties. It was found to have a clear tendency of depth profile with respect to TOC and ignition loss. Organics were stabilized in the range of 0.5 ~ 0.7 % TOC and 8 ~ 9 % ignition loss in 30 years, whereas, the surficial sediments have the highest concentrations of about 3.0 % of TOC and 13 ~ 15 % ignition loss. Those are much higher than the values of the main stream, the Nakdong River, which reflects the deposit of biodegradable organics from plants and other lifes. The vertical distribution of heavy metals in two sediment cores was investigated to elucidate historical trends of heavy metals deposited into Upo wetland. The depth profile concentrations of each heavy metal were compared and discussed with the Concensus-Based Sediment Quality Guidelines for freshwater ecosystems. All the Cd data for the vertical distribution in the sediments were detected above PEC value for Cd, which predict harmful effects on sediment-dwelling organisms expected to occur frequently. The concentrations of Zn, Cu, and Cr in all sediment samples for depth profile were detected below the TEC values, which provided a basis predicting the absence of toxicity by Zn, Cu, and Cr.

  • PDF

Conversion Factor for Determinating Carbon Contents from Organic Matter Contents in Composts by Ignition Method (회화법으로 측정한 퇴비중 유기물 함량을 탄소 함량으로 변환하기 위한 환산계수 결정)

  • Nam, Jae-Jak;Cho, Nam-Jun;Jung, Kwang-Yong;Lee, Sang-Hak
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.31 no.4
    • /
    • pp.380-383
    • /
    • 1998
  • For the evaluation of the quality of compost, the determination of C/N ratio is mandatory in Korea. Accordingly it is necessary to measure the total carbon content of compost for the quality control of composts. It is, however, not easy to measure the carbon content of compost. For practical purposes total carbon content of compost can be estimated from the total organic matter content, which is estimated by way of ignition loss. For this, it is necessary to establish the factor for conversion of organic matter into carbon. We studied the relationship between the organic matter content determined by ignition method and total carbon content measured by elemental analyzer using 160 compost sample collected from the markets. The relationship between the carbon content and organic matter in those composts was found to be "y(% carbon)=1.995+0.484%(% organic matter)"($r^2=0.943$). This result suggests that total carbon contents of composts can be estimated from the organic matter content.

  • PDF

Characteristics of Image Sticking Observed During Background Display in AC-PDP (AC PDP의 배경광 잔상특성)

  • 류재화;임성현;김동현;김중균;이호준;박정후
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.53 no.2
    • /
    • pp.91-96
    • /
    • 2004
  • In darkroom condition, it was observed that a white picture pattern lasted several minutes leaves a recognizable trace in subsequent black background picture. Although this is not a serious problem for the most current public display or home TV applications, the image sticking should be minimized for future high quality multimedia display applications. In order to characterize this picture memory effect having relatively long time scale, spatially resolved luminance measurement and light waveform measurement have been performed. Pixels located at the outer boundary of white pattern previously displayed shows highest luminance. These cells also shows fastest ignition at the ramp up reset sequence. The luminance and ignition voltage differences between boundary cells and the other cells are increased with display duration and number of sustain-pulse. It is speculated that image sticking observed at the boundary cell is originated from the transport of charged particles and re-deposition of reactive species such as Mg, O provided from strong sustain discharge region.

The Distribution Characteristics of Grain Size and Organic Matters of Surface Sediments from the Nakdong-Goryeong Mid-watershed (낙동·고령 중권역의 표층 퇴적물 입도 조성 및 유기물질 분포 특성 변화)

  • Kim, Shin;Ahn, Jungmin;Kim, Hyounggeun;Kwon, Heongak;Kim, Gyeonghoon;Shin, Dongseok;Yang, Deukseok
    • Journal of Environmental Science International
    • /
    • v.27 no.6
    • /
    • pp.411-423
    • /
    • 2018
  • To investigate the distribution characteristics of grain size and organic matter of surface sediments from the Nakdong-Goryeong Mid-watershed, surface sediments were collected and analyzed. The samples were collected from six sited at four different times between May 2013 and May 2014. The were analyzed for grain size, water content, ignition loss, chemical oxygen demand, total organic carbon and total nitrogen. The surface sediments were mainly composed of medium sand (mean 44.7%) and coarse sand (mean 32.8%) and became coarser in May 2014. Fine sediments at the site NG-2 were poorly sorted and positively skewed, and occur in a tributary environment that is relatively low-energy compared with the other sites. The water content at the studied sites (15.3 ~ 34.9%) averaged 20.25%, and ignition loss (0.4 ~ 5.8%) and total nitrogen (274 ~ 2493 mg/kg) averaged 1.33% and, 696 mg/kg, respectively. These values indicated that the sediments were not seriously contaminated when compared with the sediment pollution evaluation standard of the National Institute of Environmental Research. The chemical oxygen demand (mean 0.17%) was at the non-polluted level compared with United States Environmental Protection Agency sediment quality standards. The total organic carbon (mean 0.18%) at all sites except site NG-2 (lowest effect level) was the no effect level of the Ontario sediment quality guidelines. The COD/IL (0.02 ~ 0.20) and C/N (0.73 ~ 6.76) were less than 1 and 10, respectively. Organic matter in the study area produced naturally from aquatic organisms. Results of principal component analysis showed that fine sediments (very fine sand and silt) were significantly affected by organic matters (ignition loss, chemical oxygen demand, total organic carbon and total nitrogen). In addition, the highest organic matters content in the study area occurred at the site with the finest sediments (NG-2).

Change in Geochemical Characteristics of Surface Sediments in the Nakdong River Main Stream (낙동강 본류에 분포하는 표층 퇴적물의 지화학적 특성 변화)

  • Kim, Shin;Lee, Kwonchul;Kim, Jueon;Jung, Kangyoung;Ahn, Jungmin;Kim, Hyounggeun;Lee, Injung;Shin, Dongseok;Yang, Deukseok
    • Journal of Environmental Science International
    • /
    • v.26 no.3
    • /
    • pp.311-324
    • /
    • 2017
  • To certificate change in the geochemical characteristics of surface sediments in the main stream of the Nakdong River, surface sediments from 12 sampling sites during the first and second half year (total 24 sampling sites) were collected and analyzed for grain size, ignition loss, total organic carbon and heavy metal content. Surface sediments mainly composed of sand (coarse and medium sand) and fining changed from the first half to the second half of the year. Ignition loss, total organic carbon and heavy metals content increased in the second half of the year. Some heavy metals (Zn, Ni and Cu) were found to be at the lowest effect levels according to Ontario sediment quality guidelines. Additionally, most heavy metals were found to be at the non polluted level and level I according to USEPA sediment quality standards and National Institute of Environmental Research sediment pollution evaluation standard, respectively. The enrichment factor (< 1) and index of geoaccmulation (< 0) were non polluted in the study area. The correlation analysis results showed that ignition loss, total organic carbon and heavy metal content were highly correlated with grain size. Regarding changes in geochemical characteristics of surface sediments in the study area, grain size fine and organic matter and heavy metal content increased in the second half year. Nonetheless these results indicated pollution levels that did not adversely affect the benthos.

Study on the Sediment Quality in Bottom Water (I) (수 저층의 저질 조사 (I) - 저질 조사의 중요성과 분석에 관하여 -)

  • Kim, Do-Hee
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.13 no.1 s.28
    • /
    • pp.93-102
    • /
    • 2007
  • Particle materials sink in bottom and dissolved inorganic substances release from sediment and many kinds of materials continuously exchange in sediment and water column as well as transfer and transformation in sediment. The study of sediment quality means the state of sediment pollution relation of the water quality, sediment biota, materials fluxes between sediment and water column, transformation of materials in sediment is being important in recent. The state of sediment quality imply that the history of water pollution for long time, because the sediment quality does not change temporally. The sediment quality of bottom water can be used as a good indicator of pollution at present and in future. The major index of sediment qualities are the content of nutrients and hazard materials such as metals, Ignition Loss (IL), Total Sulfur (TS), Oxidation Reduction Potential (ORP), sediment COD, color, odor and the release of nutrients from sediment. However, there are some arguments between researchers about compare to estimation of sediment quality and sampling and analysis of sediment. In this study, I will introduce the method of sediment sampling, analyzing and estimating of the sediment pollution.

  • PDF