• Title/Summary/Keyword: If-Then rule

Search Result 214, Processing Time 0.035 seconds

The Study on Inconsistent Rule Based Fuzzy Logic Control using Neural Network

  • Cho, Jae-Soo;Park, Dong-Jo;Z. Bien
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1997.11a
    • /
    • pp.145-150
    • /
    • 1997
  • In this paper is studied a method of fuzzy logic control based on possibly inconsistent if-then rules representing uncertain knowledge or imprecise data. In most cases of practical applications adopting fuzzy if-then rule bases, inconsistent rules have been considered as ill-defined rules and, thus, not allowed to be in the same rule base. Note, however, that, in representing uncertain knowledge by using fuzzy if-then rules, the knowledge sometimes can not be represented in literally consistent if-then rules. In this regard, when it is hard to obtain consistent rule base, we propose the weighted rule base fuzzy logic control depending on output performance using neural network and we will derive the weight update algorithm. Computer simulations show the proposed method has good performance to deal with the inconsistent rule base fuzzy logic control. And we discuss the real application problems.

  • PDF

Proposition of negatively pure association rule threshold (음의 순수 연관성 규칙 평가 기준의 제안)

  • Park, Hee-Chang
    • Journal of the Korean Data and Information Science Society
    • /
    • v.22 no.2
    • /
    • pp.179-188
    • /
    • 2011
  • Association rule represents the relationship between items in a massive database by quantifying their relationship, and is used most frequently in data mining techniques. In general, association rule technique generates the rule, 'If A, then B.', whereas negative association rule technique generates the rule, 'If A, then not B.', or 'If not A, then B.'. We can determine whether we promote other products in addition to promote its products only if we add negative association rules to existing association rules. In this paper, we proposed the negatively pure association rules by negatively pure support, negatively pure confidence, and negatively pure lift to overcome the problems faced by negative association rule technique. In checking the usefulness of this technique through numerical examples, we could find the direction of association by the sign of the negatively pure association rule measure.

Effective Design of Inference Rule for Shape Classification

  • Kim, Yoon-Ho;Lee, Sang-Sock;Lee, Joo-Shin
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1998.06a
    • /
    • pp.417-422
    • /
    • 1998
  • This paper presents a method of object classification from dynamic image based on fuzzy inference algorithm which is suitable for low speed such as, conveyor, uninhabited transportation. At first, by using feature parameters of moving object, fuzzy if - then rule that can be able to adapt the wide variety of surroundings is developed. Secondly, implication function for fuzzy inference are compared with respect the proposed algorithm. Simulation results are presented to testify the performance and applicability of the proposed system.

  • PDF

Negatively attributable and pure confidence for generation of negative association rules (음의 연관성 규칙 생성을 위한 음의 기여 순수 신뢰도의 제안)

  • Park, Hee-Chang
    • Journal of the Korean Data and Information Science Society
    • /
    • v.23 no.5
    • /
    • pp.939-948
    • /
    • 2012
  • The most widely used data mining technique is to explore association rules. This technique has been used to find the relationship between items in a massive database based on the interestingness measures such as support, confidence, lift, etc. Association rules are frequently used by retail stores to assist in marketing, advertising, floor placement, and inventory control.In general, association rule technique generates the rule, 'If A, then B.', whereas negative association rule technique generates the rule, 'If A, then not B.', or 'If not A, then B.'. We can determine whether we promote other products in addition to promote its products only if we add negative association rules to existing association rules. In this paper, we proposed the negatively attributable and pure confidence to overcome the problems faced by negative association rule technique, and then we checked three conditions for interestingness measure. The comparative studies with negative confidence, negatively pure confidence, and negatively attributable and pure confidence are shown by numerical examples. The results show that the negatively attributable and pure confidence is better than negative confidence and negatively pure confidence.

An improvement of LEM2 algorithm

  • The, Anh-Pham;Lee, Young-Koo;Lee, Sung-Young
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2011.06a
    • /
    • pp.302-304
    • /
    • 2011
  • Rule based machine learning techniques are very important in our real world now. We can list out some important application which we can apply rule based machine learning algorithm such as medical data mining, business transaction mining. The different between rules based machine learning and model based machine learning is that model based machine learning out put some models, which often are very difficult to understand by expert or human. But rule based techniques output are the rule sets which is in IF THEN format. For example IF blood pressure=90 and kidney problem=yes then take this drug. By this way, medical doctor can easy modify and update some usable rule. This is the scenario in medical decision support system. Currently, Rough set is one of the most famous theory which can be used for produce the rule. LEM2 is the algorithm use this theory and can produce the small set of rule on the database. In this paper, we present an improvement of LEM2 algorithm which incorporates the variable precision techniques.

Design of ECG Pattern Classification System Using Fuzzy-Neural Network (퍼지-뉴럴 네트워크를 이용한 심전도 패턴 분류시스템 설계)

  • 김민수;이승로;서희돈
    • Proceedings of the IEEK Conference
    • /
    • 2002.06e
    • /
    • pp.273-276
    • /
    • 2002
  • This paper has design of ECG pattern classification system using decision of fuzzy IF-THEN rules and neural network. each fuzzy IF-THEN rule in our classification system has antecedent lingustic values and a single consequent class. we use a fuzzy reasoning method based on a single winner rule in the classification phase. this paper in, the MIT/BIH arrhythmia database for the source of input signal is used in order to evaluate the performance of the proposed system. From the simulation results, we can effectively pattern classification by application of learned from neural networks.

  • PDF

A Study on Pattern Analysis of Sustainability Management Using Fuzzy ID3 (퍼지 ID3를 이용한 지속가능경영의 패턴분석에 관한 연구)

  • Kim, Hong-Jin;Hwang, Seung-Gook
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.18 no.5
    • /
    • pp.700-705
    • /
    • 2008
  • In this paper, a model to evaluate the sustainability management for small and middle enterprises was suggested. Also, the if-then rules and its decision tree for pattern analysis which is obtained by fuzzy ID3 from the data of sustainability management were shown. The suggested model can be used for the evaluation tool of competition increasement of enterprises. If the enterprise can recognize that the evaluation rule can be taken advantage of the sustainability management pattern analysis using fuzzy ID3, it is expected that they can use the rule effectively for self evaluation.

ERROR BOUNDS OF TRAPEZOIDAL RULE ON SUBINTERVALS USING DISTRIBUTION

  • Hong, Bum-Il;Hahm, Nahm-Woo
    • Honam Mathematical Journal
    • /
    • v.29 no.2
    • /
    • pp.245-257
    • /
    • 2007
  • We showed in [2] that if $r\leq2$, then the average error between simple Trapezoidal rule and the composite Trapezoidal rule on two consecutive subintervals is proportional to $h^{2r+3}$ using zero mean Gaussian distribution under the assumption that we have subintervals (for simplicity equal length) partitioning and that each subinterval has the length. In this paper, if $r\geq3$, we show that zero mean Gaussian distribution of average error between simple Trapezoidal rule and the composite Trapezoidal rule on two consecutive subintervals is bounded by $Ch^8$.

Hardware Approach to Fuzzy Inference―ASIC and RISC―

  • Watanabe, Hiroyuki
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1993.06a
    • /
    • pp.975-976
    • /
    • 1993
  • This talk presents the overview of the author's research and development activities on fuzzy inference hardware. We involved it with two distinct approaches. The first approach is to use application specific integrated circuits (ASIC) technology. The fuzzy inference method is directly implemented in silicon. The second approach, which is in its preliminary stage, is to use more conventional microprocessor architecture. Here, we use a quantitative technique used by designer of reduced instruction set computer (RISC) to modify an architecture of a microprocessor. In the ASIC approach, we implemented the most widely used fuzzy inference mechanism directly on silicon. The mechanism is beaded on a max-min compositional rule of inference, and Mandami's method of fuzzy implication. The two VLSI fuzzy inference chips are designed, fabricated, and fully tested. Both used a full-custom CMOS technology. The second and more claborate chip was designed at the University of North Carolina(U C) in cooperation with MCNC. Both VLSI chips had muliple datapaths for rule digital fuzzy inference chips had multiple datapaths for rule evaluation, and they executed multiple fuzzy if-then rules in parallel. The AT & T chip is the first digital fuzzy inference chip in the world. It ran with a 20 MHz clock cycle and achieved an approximately 80.000 Fuzzy Logical inferences Per Second (FLIPS). It stored and executed 16 fuzzy if-then rules. Since it was designed as a proof of concept prototype chip, it had minimal amount of peripheral logic for system integration. UNC/MCNC chip consists of 688,131 transistors of which 476,160 are used for RAM memory. It ran with a 10 MHz clock cycle. The chip has a 3-staged pipeline and initiates a computation of new inference every 64 cycle. This chip achieved an approximately 160,000 FLIPS. The new architecture have the following important improvements from the AT & T chip: Programmable rule set memory (RAM). On-chip fuzzification operation by a table lookup method. On-chip defuzzification operation by a centroid method. Reconfigurable architecture for processing two rule formats. RAM/datapath redundancy for higher yield It can store and execute 51 if-then rule of the following format: IF A and B and C and D Then Do E, and Then Do F. With this format, the chip takes four inputs and produces two outputs. By software reconfiguration, it can store and execute 102 if-then rules of the following simpler format using the same datapath: IF A and B Then Do E. With this format the chip takes two inputs and produces one outputs. We have built two VME-bus board systems based on this chip for Oak Ridge National Laboratory (ORNL). The board is now installed in a robot at ORNL. Researchers uses this board for experiment in autonomous robot navigation. The Fuzzy Logic system board places the Fuzzy chip into a VMEbus environment. High level C language functions hide the operational details of the board from the applications programme . The programmer treats rule memories and fuzzification function memories as local structures passed as parameters to the C functions. ASIC fuzzy inference hardware is extremely fast, but they are limited in generality. Many aspects of the design are limited or fixed. We have proposed to designing a are limited or fixed. We have proposed to designing a fuzzy information processor as an application specific processor using a quantitative approach. The quantitative approach was developed by RISC designers. In effect, we are interested in evaluating the effectiveness of a specialized RISC processor for fuzzy information processing. As the first step, we measured the possible speed-up of a fuzzy inference program based on if-then rules by an introduction of specialized instructions, i.e., min and max instructions. The minimum and maximum operations are heavily used in fuzzy logic applications as fuzzy intersection and union. We performed measurements using a MIPS R3000 as a base micropro essor. The initial result is encouraging. We can achieve as high as a 2.5 increase in inference speed if the R3000 had min and max instructions. Also, they are useful for speeding up other fuzzy operations such as bounded product and bounded sum. The embedded processor's main task is to control some device or process. It usually runs a single or a embedded processer to create an embedded processor for fuzzy control is very effective. Table I shows the measured speed of the inference by a MIPS R3000 microprocessor, a fictitious MIPS R3000 microprocessor with min and max instructions, and a UNC/MCNC ASIC fuzzy inference chip. The software that used on microprocessors is a simulator of the ASIC chip. The first row is the computation time in seconds of 6000 inferences using 51 rules where each fuzzy set is represented by an array of 64 elements. The second row is the time required to perform a single inference. The last row is the fuzzy logical inferences per second (FLIPS) measured for ach device. There is a large gap in run time between the ASIC and software approaches even if we resort to a specialized fuzzy microprocessor. As for design time and cost, these two approaches represent two extremes. An ASIC approach is extremely expensive. It is, therefore, an important research topic to design a specialized computing architecture for fuzzy applications that falls between these two extremes both in run time and design time/cost. TABLEI INFERENCE TIME BY 51 RULES {{{{Time }}{{MIPS R3000 }}{{ASIC }}{{Regular }}{{With min/mix }}{{6000 inference 1 inference FLIPS }}{{125s 20.8ms 48 }}{{49s 8.2ms 122 }}{{0.0038s 6.4㎲ 156,250 }} }}

  • PDF

Complex LMS Fuzzy Adaptive Equalizer with Decision Feedback (판정궤환이 있는 복소 LMS 퍼지 적응 등화기)

  • 이상연;김재범;이기용;이충웅
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.21 no.10
    • /
    • pp.2579-2585
    • /
    • 1996
  • In this paper, a complex fuzzy adaptive decision feedback equalizer(CFADFE) based on the LMS algorithm is proposed. The propoed equalizer is based on the complex fuzzy adaptive equalizer. The CFADFE isconstructed from a set of changeable complex fuzzy IF-THEN rules, where the 'IF' part of the rule is characterized by the state from a set of changealble complex fuzzy IF-THEN rules, where the 'IF' part of the rule is characterized by the state of the desision feedback. the role of decision feedback is to reduce the computational complexity. Computer simulation of the decision feedback. The role of decision feedback is to reduce the computational complexity. Computer simulation shosw that the CFADFE notonly reduces the computational complexity but also improves the performance compared with the conventional complex fuzzy adaptive equalizers. We also show that the adaptation speed is greatly improved by incorporating some linguistic information about the channel into the equalzer. It is applied to M-ary QAM digital communication system with linear and nonlinear complex channel characteristics.

  • PDF