2R WX| W X5 AAH S 97T ZHISEUS =2

The Study on Inconsistent Rule Based Fuzzy Logic
Control using Neural Network

Jae-Soo Cho, Dong-Jo Park and Z. Bien

Department of Electrical Engineering
Korea Advanced Institute of Science & Technology (KAIST)
373-1 Kusong-dong, Yusong-gu, Taejon 305-701, Republic of Korea
Tel : +82-42-869-8038, Fax : +82-42-869-8038
E-Mail : jaesoo@tercel kaist.ac.kr

Key Word : Inconsistent rules, Adaptive rule weights, Neural network

Abstract

In this paper is studied a method of fuzzy
logic control based on possibly inconsistent if-then
rules representing uncertain knowledge or impre-
cise data. In most cases of practical applica-
tions adopting fuzzy if-then rule bases, inconsis-
tent rules have been considered as ill-defined rules
and, thus, not allowed to be in the same rule
base. Note, however, that, in representing uncer-
tain knowledge by using fuzzy if-then rules, the
- knowledge sometimes can not be represented in
literally consistent if-then rules.

In this regard, when it is hard to obtain consis-
tent rule base, we propose the weighted rule base
fuzzy logic control depending on output perfor-
mance using neural network and we will derive the
weight update algorithm. Computer simulations
show the proposed method has good performance
to deal with the inconsistent rule base fuzzy logic
control. And we discuss the real application prob-
lems.

1 Introduction

Previous researches revealed that fuzzy control
has, in many cases, a superiority over the con-
ventional controller for automating very complex
and/or poorly-defined processes. In most of appli-
cations adopting fuzzy if-then rule bases, inconsis-
tent rules are often considered as ill-defined rules
and are not allowed to form the same rule base.
It has been believed that we should resolve incon-
sistency in the rule base before the rules are pro-
cessed for inference and that the obtained inconsis-
tent rules should be discarded or modified to make

the rule base consistent. However, we know that,
though inconsistent, as far as they are heuristically
meaningful, each rule in the rule base may contain
some form of informative knowledge so that discre-
tion of good rules from bad rules in the rule base
may not be an easy task. As the approaches to
resolve inconsistency in the obtained inconsistent
if-then rules, one may discard inconsistent rules[1]
examining the rules according to their contribution
to inference. However, since each rule in the rule
base may contain informative knowledge, measur-
ing the contribution of the rules in the rule base
and discarding bad rules from good rules may not
be an easy task. Also, we can use a trading off con-
cept to make the given inconsistent rules. Trading
off the consequents of the inconsistent rules can
be considered by using multi attributive decision
making technique[2]. The new approach for resolv-
ing inconsistency in the rule base was proposed[3)].
This new approach can be useful when there in-
volves much uncertainty in extracting control rules
and it is very difficult to obtain totally consistent
rule base. Now we regard inconsistent rules as the
ones which contain informative knowledge. In this
paper, based on the fact that our knowledge can
not always be represented in literally consistent
way, it is claimed that inconsistent rules can be
processed for inference at the same time. In this
regard, when it is hard to obtain consistent rule
base, it can be a possible approach that we use
the weighted rule bases depending on output per-
formance. And we can change each weights adap-
tively using the neural network simulator.

—145—

2 Problem Statement

2.1 Inconsistent Rules

The fuzzy rule base can be obtained by the qual-
itative knowledge about the plant or by obserb-
ing the actions of the human operator. Based on
the qualitative knowledge, we first divide the input
and output spaces into fuzzy regions, and assign
each region a fuzzy membership function and then
map input regions into output regions by using
if-then rules. Each input fuzzy region is mapped
into only one output fuzzy region and, therefore,
we may say that the rule base made in this man-
ner is a consistent rule base. Many successful re-
sults have been obtained by using such a normal
rule base. However, there can be many situations
where the normal rule base is not enough to ex-
press our knowledge specially when the knowledge
is uncertain. In this section, we deal with the rule
base including inconsistent rules.

Examining fuzzy rule sets, one may imagine
that various forms of inconsistencies can exist in a
group of rules. In fuzzy logic , we say that a set of
two or more ”If-then” rules are inconsistent if, for
the same antecedents(If part), the corresponding
consequents(then part) are not the same[4]

Two or more rules are said to be explicitly incon-
- sistent if they have identical antecedents(If-part)
but have different consequents(then-part). For ex-
ample, the following rules R1 and R2 are explicitly
inconsistent:

R1 : If (error is big) and (change of error is
small), then (output is big)

R2 : If (error is big) and (change of error is
small), then (output is small).

Other than the explicitly inconsistent rules,
some implicit inconsistency may exit even in the
normal rule base. The overlapping of the an-
tecedents in fuzzy sets imply some inconsistencies
to some extent. When there are many variables
to refer to, if we make two control rules with par-
tial variables and the two rules use different partial
variables in their conditional parts, then the two
rules can be considered to be inconsistent. For
a simple example , consider two rules, each with
only one antecedent condition even though there
are two variables to use for the rules:

R3 : If (error is small) then (output is big)
R4 : If (change of error is big) then (output is
small).

It seems that the rules R3, R4 are not inconsis-
tent with each other. However, the two rules R3

and R4 can be made inconsistent by appending
fuzzy description for missing antecedent variables.
Specifically, suppose there are another rules in the
rule base which read as:

R5 : If (ervor is small) and (change of error is
big) then (output is big)

R6 : If {ervor is small) and (change of error is
big) then (output is small).

Note that R5 and R6 are more specific versions
of the rules R3 and R4, respectively. But R5 and
R6 are explicitly inconsistent. Also, if we have R6
instead of R4, then R3 and R6 are explicitly incon-
sistent. If we look at this form in the view point of
overlapping, the antecedents of the rules R3 and
R4 are also overlapped with each other. Figure 1
shows the overlapping of the two rules. There may
be other kinds of inconsistent rules when we use
the rules which are independently made by multi-
ple sources or from different view points.

-
wrror

i £rog

chanqe Of errer

E
k3
g overlapped area

Figure 1: Overlapping of the conditional parts of
the rules R3 and R4

2.2 Example simulations

The uncertainties and the imprecision in extract-
ing control rules for fuzzy control can make the
rules inconsistent and conflicting with each other,
but it would be a very difficult and tedious task
for a rule designer to discard or modify one rule or
another in consideration of the confidence level to
resolve inconsistencies of the rules under consider-
ation. At first, we show the bad performance when
you use the inconsistent rule based fuzzy controller
to control a simple well-known plant. Through this
simple simulation, we can easily know the effects of
inconsistent rules to the plant output performance.

Ezample : Plant Model H(s) = 3-(5‘1—17

Figure 2 shows the fuzzy rules and their mem-
bership functions. We use 13 rules and additional
3 inconsistent rules purposely as follows:

—146—

Original Rule 1 : If E is ZO and AE is NM,
then OUT is NM

Inconsistent Rule 1 : If Eis ZO and AFE is NM,
then OUT is NS

Original Rule 2 : If E is NS and AE s 20,
then OUT is NS

Inconsistent Rule 2 : If E is NS and AE is ZO,
then QUT is PS

Original Rule 3 : If E is PM and AE is ZO,
then OUT is PM

Inconsistent Rule 3 : If E is PM and AE is ZO,
then OUT is NM

AE
XB MM NS 2O PS PM PB|

L]
- w [NS b 13 m 1]

ns
E zo{me 1t x5 20 PS PM B
[£3 Ps

L ™ -1 -3 e 72 I 72 B
#al [

233

E : Error AE: Change of E£rrat 10 : Iero

¥S : Meqative Small MM : Negative Medium WB : Neqative Big
PS ; Positive Small PN : Positive Medium PB : Positive Big

Figure 2: Basic 13 rules and membership function

Figure 3 shows a comparison between original
13 rule based control and 16 rule based control.
We use a step input as the reference and simulate
under the same conditions except the rule num-
ber. We can see a little bit difference between
them and how important it is to get consistent
rules. Through the above simulation results, we

Wl ...:1

e

L
oot

arpif

ot

Figure 3: The comparison between correct rules
and inconsistent rulse(1)

can check that the inconsisten rule base fuzzy logic
controller has a bad output performance. We will
use the above plant model and rule bases to test
following proposed method.

3 Weighted Rule Base Fuzzy
Logic Control

3.1 Basic Structure

One of the possible approaches to design a con-

" troller for a very complex plant controlled by hu-

mans is to design a controller emulating the con-
trol actions of the human by using sampled I/O
data from the actions of the human. However it is
usually very difficult or tedious to obtain the sam-
pled I/O data of the human actions and, even if we
manage to obtain the data, they can be imprecise
or noisy. In this case, the design of the controller is
basically a function approximation problem by us-
ing noisy or imprecise sampled I/0O data. It is well
known that the artificial neural networks can be
chosen to approximate the complex functions. In
this weighted rule base fuzzy logic control, we use
the neural network to emulate the plant. And this
emulating neural network will be used for weight
update algorithm.

Figure 4 shows the basic structure of proposed
weighted rule base fuzzy logic control. This struc-
ture have additional two blocks to the original
fuzzy logic control. One block is a neural emu-
lating part and the other is rule weight update
algorithm part. And the fuzzy inference block and
defuzzifier block are changed to the weighted fuzzy
inference and weighted defuzzifier.

Our objective is very simple. We want to impose
weights on all rules depending on the performance
measures adaptively and update the weights us-
ing neural network emulator using backpropaga-
tion algorithm. Therefore, the inconsistent rule
weights will be adaptively changed to increase the
performance measure.

Ref A hF‘ Fuzba s Yoged Weged Owput | U Actual [3
Gaio Fazy GCae Plant
5
Neon Ou
Emulator
R Weig
Updae Algorihn

Figure 4: The proposed basic structure

The overall procedure to the proposed method

—147—

is as follows.

Step 1 : Identification of the actual plant using
neural network using off line I/O data.

Step 2 : Initial rough fuzzy rules generation.

Step 3 : Put the initial rules weights one.

Step 4 : Apply control input and obtain outputs. .

Step 5 : Calculate the performance measure.
Step 6 : Weight update using neural emulator.

Now, we will explain the weighted rule based
fuzzy logic control method. The following if-then
rules can characterize the proposed weighted rule
base.

Rule 1 : If (z, is Ay) and (z3 is B,),--- , then
(uisW, U,) B }

Rule 2 : If (z, is Az) and (22 i3 By), - --, then
(uis WaxUs)

Rule i : If (z) is A;) and (z2 is B;), ---, then
(visW;»xU;)

So, if we use the center of area/gravity deffuzzifi-
cation method, the defuzzified output is as follows:

ut = Z (W ul) mU(u!) (1)
mu(u.)

. 3.2 Rule Weight Update Algorithm

The mathematical model for the neural emulator

in Figure 4 is shown below:

=3 VPX;(k), X;(k)
i

i) = S ViLih), f

On (k)

8;(k)) = s

where On(k), VO(k), Vi, and I;(k) are respec-
tively neural network output, output weight, in-
put weight and input. () is a sigmoid function.
Let Ref(k) and out(k) be the reference and actual
responses of the plant, then a performance func-
tion for training cycle for the weight update can
be defined as

1
J(k) = 5(Ref (k) — out(k))*. (4)
The gradient of error in performance function with

respect to the weight vector W is represented by

8J(k) 3out(k)

e = —(Ref() -

—(Ref(k)

out(k)) -

— out(k)) -

30N(k)
ow

+(5)

= f(55(k)), (2)

1+ e—2+S; (O (3)

where out(k) = On(k). The output gradient
8—05-’{7}52 needs to be computed. The output gradi-
ents with respect to the weight are given by chain
rule,

80n(k) _ 8On(K) Bu*(k) o
aW(E) Ju(k) oW °
80x (k) T 00N (k) OXi(k)
u(F) 2 BXm Bu®
i=NH oX,(k)

R0

S = (5,00 - S — 5,00 -V
i=NH

R UO RO

du* (k)):J u; - my (u:)

gL ! . ®)

E; =1 my(u;)

The weights can now be adjusted by the follow-
ing gradient method, i.e., the update rule of the
weights becomes

aJ(k)

Wik +1) " W) 9

=W(k) -

where 7) is a learning rate.

4 Simulation Results

To check the performance of the proposed method
and learning algorithm, we have performed a lot of
simulations. However, for the sake of convenience,
we present here only illustrative example. We have
compared inconsistent rule based fuzzy logic con-
troller and the proposed weighted rule based fuzzy
logic controller.

Figure 5 and Figure 6 show the simulation re-
sults when we simulate Ezample. We simulated
with all the same conditions to compare the out-
put results. As shown in Figure 5, 6, the proposed
method gives better output performance in case of
inconsistent rule base fuzzy control. And Figure 7
show the simulation result when we fixed the rule
weights at Time = 1200 after learning.

Let’s check the weight changes. At first, in the
Ezample simulation, Figure 8, 9, 10 show respec-
tively original rule 1 weight and inconsistent rule
1 weight, original rule 2 weight and inconsistent

—148—

——— J

. h T
“
1 f—- e

. ..

! (T} 2

o
0
or

. —

*0 "o "o - ”»ne]

Figure 5: Step reference input simulation result

; —sE T
i s 1
l .
. 7 [—
'\ i
J i

Figure 6: Square reference input simulation result

!

Figure 7: Fixed rule weight after learning until
Time = 1200

rule 2 weight, original rule 3 weight and inconsis-
ten rule 3 weight respectively. Figure 11, 12 also
show the changed rule weights and unchanged rule
weights respectively.

.) Y = o one [

Figure 8: Weight comparison between inconsistent
rule 1

it
1
i
i

Figure 9: Weight comparison between inconsistent
rule 2

Figure 10: Weight comparison between inconsis-
tent rule 3

Through the weight changes, we can find out two
important phenomena. One is inconsistent rule
weight generally decrease more than correct rule
weights. The other is correct rule weights gen-
erally unchanged. This information will be very
helpful to make the rough rules in unknown com-
plex plants.

—149—

e —
zs e aar o 4
s
24 1
2z
.
P
15t
1}t
* / /
SO
. 4
oa
o 200 £ =3 3 Tom o0

Figure 11: Changed weights(somewhat related in-
consistent rules)

i
HHH

A

i‘gL

o 200 <00

Figure 12: Unchanged Weights(consistent rule)

5 Discussion and Conclusions

Inconsistent rules can be obtained when the con-
trol actions of experts are directly and naively rep-
resented. However, such inconsistent rules can
give trouble for conventional fuzzy logic control
because of the fat shape dominance phenomenon.
Of course, the fuzzy logic control with the conven-
tional inference method can work well, if the rules
and linguistic terms are modified via trial and error
so that there are no inconsistent rules. However,
it can be a difficult and tedious task for rule de-
signers. In order to overcome such difficulty, we
have proposed a method of weighted rule based
fuzzy logic control with neural network. And we
derived the weight update algorithm with neural
network backpropagation algorithm. The com-
puter simulations show that the proposed method
is more effective than the conventional method in
case of inconsistent rules. But, in real application,
we should consider the stability problem when we
want to apply the method to the plant in real time.
But this method can be very useful to design rough
rules for the control of complex unknown plants,
namely, It is very helpful in rule generation if we
know the weight change information. change in-
formation. And this method can be used in the

real plant with fixed weight after off-line learning.

References

[1] LX. Wang and J.M. Mendel, “Generating
Fuzzy Rules by Learning from Example,” in
IEEE Trans, Syst. Man. Cybern, vol. 22, No.
6, pp- 1414-1472, 1992.

[2] M.L. Hussein and M.A. Abo-Sina, “Decom-
position of multiobjective programming prob-
lems by hybrid fuzzy dynamic programming,”
in Fuzzy Sets and Systems, val. 60, pp. 25 -32,
1993.

[3] W. Yu, and Z. Bien, “Design of fuzzy logic
controller with inconsistent rule base,” in
Journal of Intelligent and Fuzzy Systems, vol.
2, pp 147-159, 1994.

(4] R.R. Yager and H.L. Larson, “On discovering
potential inconsistencies in validating uncer-
tain knowledge bases by reflecting on the In-
put,” in IEEE Trans, Syst, Man, Cybern, vol.
21, pp. 790-801, 1991.

[5] K. S. Narendra and K. Parthasarathy, “Iden-
tification and Control of Dynamic Systems
Using Neural Networks,” in IEEE Trans.
Neural Networks, vol. 1, No. 1, pp. 4-27, Mar.
1990.

[6] Chao-Chee Ku, Kwang Y. Lee, “Diagonal Re-
current Neural Networks for Dynamic Sys-
tems Control,” IEEE Trans. On Neural Net-
works. Vol 6. No. 1, January 1995.

—150—

