• Title/Summary/Keyword: Identification modeling

Search Result 728, Processing Time 0.023 seconds

Adaptation and Clustering Method for Speaker Identification with Small Training Data (화자적응과 군집화를 이용한 화자식별 시스템의 성능 및 속도 향상)

  • Kim Se-Hyun;Oh Yung-Hwan
    • MALSORI
    • /
    • no.58
    • /
    • pp.83-99
    • /
    • 2006
  • One key factor that hinders the widespread deployment of speaker identification technologies is the requirement of long enrollment utterances to guarantee low error rate during identification. To gain user acceptance of speaker identification technologies, adaptation algorithms that can enroll speakers with short utterances are highly essential. To this end, this paper applies MLLR speaker adaptation for speaker enrollment and compares its performance against other speaker modeling techniques: GMMs and HMM. Also, to speed up the computational procedure of identification, we apply speaker clustering method which uses principal component analysis (PCA) and weighted Euclidean distance as distance measurement. Experimental results show that MLLR adapted modeling method is most effective for short enrollment utterances and that the GMMs performs better when long utterances are available.

  • PDF

on-line Modeling of Nonlinear Process Systems using the Adaptive Fuzzy-neural Networks (적응퍼지-뉴럴네트워크를 이용한 비선형 공정의 온-라인 모델링)

  • 오성권;박병준;박춘성
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.48 no.10
    • /
    • pp.1293-1302
    • /
    • 1999
  • In this paper, an on-line process scheme is presented for implementation of a intelligent on-line modeling of nonlinear complex system. The proposed on-line process scheme is composed of FNN-based model algorithm and PLC-based simulator, Here, an adaptive fuzzy-neural networks and HCM(Hard C-Means) clustering method are used as an intelligent identification algorithm for on-line modeling. The adaptive fuzzy-neural networks consists of two distinct modifiable sturctures such as the premise and the consequence part. The parameters of two structures are adapted by a combined hybrid learning algorithm of gradient decent method and least square method. Also we design an interface S/W between PLC(Proguammable Logic Controller) and main PC computer, and construct a monitoring and control simulator for real process system. Accordingly the on-line identification algorithm and interface S/W are used to obtain the on-line FNN model structure and to accomplish the on-line modeling. And using some I/O data gathered partly in the field(plant), computer simulation is carried out to evaluate the performance of FNN model structure generated by the on-line identification algorithm. This simulation results show that the proposed technique can produce the optimal fuzzy model with higher accuracy and feasibility than other works achieved previously.

  • PDF

A Study on the ORP Modeling in SBR Process for Nitrogen Removal: Polynomial Neural Network Is Employed (질소제거를 위한 SBR 공정운전에서 ORP 모델링에 관한 연구: 다항식 뉴럴네트워크 기법 중심)

  • 김동원;박영환;박귀태
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.53 no.4
    • /
    • pp.221-225
    • /
    • 2004
  • This paper shows the application of artificial intelligence technique such as polynomial neural network in modeling and identification of sequencing batch reactor (SBR). A wastewater treatment process for nitrogen removal in the SBR is presented. Simulation results have shown that the nonlinear process can be modeled reasonably well by the Present scheme which is simple but efficient.

FUZZY IDENTIFICATION BY MEANS OF AUTO-TUNING ALGORITHM AND WEIGHTING FACTOR

  • Park, Chun-Seong;Oh, Sung-Kwun;Ahn, Tae-Chon;Pedrycz, Witold
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1998.06a
    • /
    • pp.701-706
    • /
    • 1998
  • A design method of rule -based fuzzy modeling is presented for the model identification of complex and nonlinear systems. The proposed rule-based fuzzy modeling implements system structure and parameter identification in the efficient form of " IF..., THEN,," statements. using the theories of optimization and linguistic fuzzy implication rules. The improved complex method, which is a powerful auto-tuning algorithm, is used for tuning of parameters of the premise membership functions in consideration of the overall structure of fuzzy rules. The optimized objective function, including the weighting factors, is auto-tuned for better performance of fuzzy model using training data and testing data. According to the adjustment of each weighting factor of training and testing data, we can construct the optimal fuzzy model from the objective function. The least square method is utilized for the identification of optimum consequence parameters. Gas furance and a sewage treatment proce s are used to evaluate the performance of the proposed rule-based fuzzy modeling.

  • PDF

Development of Semantic Risk Breakdown Structure to Support Risk Identification for Bridge Projects

  • Isah, Muritala Adebayo;Jeon, Byung-Ju;Yang, Liu;Kim, Byung-Soo
    • International conference on construction engineering and project management
    • /
    • 2022.06a
    • /
    • pp.245-252
    • /
    • 2022
  • Risk identification for bridge projects is a knowledge-based and labor-intensive task involving several procedures and stakeholders. Presently, risk information of bridge projects is unstructured and stored in different sources and formats, hindering knowledge sharing, reuse, and automation of the risk identification process. Consequently, there is a need to develop structured and formalized risk information for bridge projects to aid effective risk identification and automation of the risk management processes to ensure project success. This study proposes a semantic risk breakdown structure (SRBS) to support risk identification for bridge projects. SRBS is a searchable hierarchical risk breakdown structure (RBS) developed with python programming language based on a semantic modeling approach. The proposed SRBS for risk identification of bridge projects consists of a 4-level tree structure with 11 categories of risks and 116 potential risks associated with bridge projects. The contributions of this paper are threefold. Firstly, this study fills the gap in knowledge by presenting a formalized risk breakdown structure that could enhance the risk identification of bridge projects. Secondly, the proposed SRBS can assist in the creation of a risk database to support the automation of the risk identification process for bridge projects to reduce manual efforts. Lastly, the proposed SRBS can be used as a risk ontology that could aid the development of an artificial intelligence-based integrated risk management system for construction projects.

  • PDF

Design of Fuzzy-Neural Networks Structure using Optimization Algorithm and an Aggregate Weighted Performance Index (최적 알고리즘과 합성 성능지수에 의한 퍼지-뉴럴네트워크구조의 설계)

  • Yoon, Ki-Chan;Oh, Sung-Kwun;Park, Jong-Jin
    • Proceedings of the KIEE Conference
    • /
    • 1999.07g
    • /
    • pp.2911-2913
    • /
    • 1999
  • This paper suggest an optimal identification method to complex and nonlinear system modeling that is based on Fuzzy-Neural Network(FNN). The FNN modeling implements parameter identification using HCM algorithm and optimal identification algorithm structure combined with two types of optimization theories for nonlinear systems, we use a HCM Clustering Algorithm to find initial parameters of membership function. The parameters such as parameters of membership functions, learning rates and momentum coefficients are adjusted using optimal identification algorithm. The proposed optimal identification algorithm is carried out using both a genetic algorithm and the improved complex method. Also, an aggregate objective function(performance index) with weighted value is proposed to achieve a sound balance between approximation and generalization abilities of the model. To evaluate the performance of the proposed model, we use the time series data for gas furnace, the data of sewage treatment process and traffic route choice process.

  • PDF

A Study on the AR Identification of unknown system using Cumulant (Cumulant를 이용한 미지 시스템의 AR 식별에 관한 연구)

  • Lim, Seung-Gag
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.43 no.2 s.344
    • /
    • pp.39-43
    • /
    • 2006
  • This paper deals with the AR Identification of unknown system using cumulant, which is the 3rd order statistics of output signal in the presence of the noise signal. The algorithms for identification of unknown system we applies to the AR identification method using the cumulant which is possible to the guarantees of global convergence and the representation of amplitude and phase information of system among with the method of parametric modeling. In the process of identification, we considered unknown system to the one of AR system. After the generation of input signal, it was being passed through the system then We use the its output signal that the noise is added. As a result of identification of AR system by changing the signal to noise ratio, we get the fairly good results compared to original system output values and confirmed that the pole was located in the unit circle of z transform.

A Study on the Modeling and Diagnostics in Drilling Operation (드릴링 작업의 모델링과 진단법에 관한 연구)

  • Yoon, M.C.
    • Journal of Power System Engineering
    • /
    • v.2 no.2
    • /
    • pp.73-80
    • /
    • 1998
  • The identification of drilling joint dynamics which consists of drilling and structural dynamics and the on-line time series detection of malfunction process is substantial not only for the investigation of the static and dynamic characteristics but also for the analytic realization of diagnostic and control systems in drilling. Therefore, We have discussed on the comparative assessment of two recursive time series modeling algorithms that can represent the drilling operation and detect the abnormal geometric behaviors in precision roundshape machining such as turning, drilling and boring in precision diemaking. For this purpose, simulation and experimental work were performed to show the malfunctional behaviors for drilling operation. For this purpose, a new two recursive approach (Recursive Extended Instrument Variable Method : REIVM, Recursive Least Square Method : RLSM) may be adopted for the on-line system identification and monitoring of a malfunction behavior of drilling process, such as chipping, wear, chatter and hole lobe waviness.

  • PDF

A Methodology for Ontology-based Service Drawing for SOA (SOA를 위한 온톨로지 기반의 서비스 도출 방법론)

  • Jang, Ryo-Sun;Park, Sei-Kwon;Ryu, Seung-Wan;Shin, Dong-Cheon
    • Journal of Information Technology Services
    • /
    • v.10 no.2
    • /
    • pp.309-327
    • /
    • 2011
  • Even though several methodologies for SOA(Service Oriented Architecture) have been proposed, in practical aspects most of them have some problems since they fail to propose specific policies in definition and identification of a service. This paper proposes a service modeling methodology. SOMO(Service Oriented Modeling using Ontology), which draws proper services in the process of defining and identifying services. SOMO defines a service ontology based on service definition and characteristics in SOA. The service drawing process consists of 3 steps : requirement analysis, service identification, and service definition. SOMO is expected to increase the degree of reuse and facilitates the definition and search of services by using service ontology. In addition, it clearly allows the definition and identification of services, satisfying the user requirements.

Fuzzy identification by means of fuzzy inference method (퍼지추론 방법에 의한 퍼지동정)

  • 안태천;황형수;오성권;김현기;우광방
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1993.10a
    • /
    • pp.200-205
    • /
    • 1993
  • A design method of rule-based fuzzy modeling is presented for the model identification of complex and nonlinear systems. Three kinds of method for fuzzy modeling presented in this paper include simplified inference (type 1), linear inference (type 2), and modified linear inference (type 3). The fuzzy c-means clustering and modified complex methods are used in order to identify the preise structure and parameter of fuzzy implication rules, respectively and the least square method is utilized for the identification of optimal consequence parameters. Time series data for gas funace and sewage treatment processes are used to evaluate the performances of the proposed rule-based fuzzy modeling.

  • PDF