• Title/Summary/Keyword: Identification modeling

Search Result 728, Processing Time 0.033 seconds

Two-Phase Neuro-System Identification Based on Artificial System (모조 시스템 형성에 기반한 2단계 뉴로 시스템 인식)

  • 배재호;왕지남
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.15 no.3
    • /
    • pp.107-118
    • /
    • 1998
  • Two-phase neuro-system identification method is presented. The 1$^{st}$-phase identification uses conventional neural network mapping for modeling an input-output system. The 2$^{nd}$ -phase modeling is also performed sequentially using the 1$^{st}$-phase modeling errors. In the 2$^{nd}$ a phase modeling, newly generated input signals, which are obtained by summing the 1st-phase modeling error and artificially generated uniform series, are utilized as system's I-O mapping elements. The 1$^{st}$-phase identification is interpreted as a “Real Model” system identification because it uses system's real data(i.e., observations and control inputs) while the 2$^{nd}$ -phase identification as a “Artificial Model” identification because of using artificial data. Experimental results are given to verify that the two-phase neuro-system identification could reduce the overall modeling errors.rrors.

  • PDF

A Study on Modeling and Identification for the Magnetic Bearing System (자기 베어링 시스템의 모델링 및 동정에 관한 연구)

  • Shim, S.H.;Kim, C.H.;Yang, J.H.
    • Journal of Power System Engineering
    • /
    • v.5 no.4
    • /
    • pp.44-52
    • /
    • 2001
  • This paper considers a modeling and identification for the MIMO magnetic bearing system. To obtain the nominal plant transfer functions, we have experimented on the frequency response by a closed-loop identification method because the system is unstable essentially. We suggest a method of curve-fitting for obtaining the transfer function from the frequency responses by using the system's modeling structure and two controllers which are different from each other. From the frequency response results, we found the effects of coupling by opposing controllers. And using this effects and the system's modeling structure, we could obtain the transfer functions of which have the same modularized denominators.

  • PDF

Load Modeling of Electric Locomotive Using Parameter Identification

  • Kim, Joo-Rak;Shim, Keon-Bo;Kim, Jung-Hoon
    • Journal of Electrical Engineering and Technology
    • /
    • v.2 no.2
    • /
    • pp.145-151
    • /
    • 2007
  • Electric load components have different characteristics according to the variation of voltage and frequency. This paper presents the load modeling of an electric locomotive by the parameter identification method. The proposed method for load modeling is very simple and easy for application. The proposed load model of the electric locomotive is represented by the combination of the loads that have static and dynamic characteristics. This load modeling is applied to the KTX in Korea to verify the effectiveness of the proposed method. The results of proposed load modeling by the parameter identification follow the field measurements very exactly.

Fuzzy Identification by means of Fuzzy Inference Method and Its Application to Wate Water Treatment System (퍼지추론 방법에 의한 퍼지동정과 하수처리공정시스템 응용)

  • 오성권;주영훈;남위석;우광방
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.31B no.6
    • /
    • pp.43-52
    • /
    • 1994
  • A design method of rule-based fuzzy modeling is presented for the model identification of complex and nonlinear systems. The proposed rule-based fuzzy modeling implements system structure and parameter identification in the efficient form of ``IF....,THEN...', using the theories of optimization theory , linguistic fuzzy implication rules and fuzzy c-means clustering. Three kinds of method for fuzzy modeling presented in this paper include simplified inference (type I), linear inference (type 2), and modified linear inference (type 3). In order to identify premise structure and parameter of fuzzy implication rules, fuzzy c- means clustering and modified complex method are used respectively and the least sequare method is utilized for the identification of optimum consequence parameters. Time series data for gas furance and those for sewage treatment process are used to evaluate the performance of the proposed rule-based fuzzy modeling. Comparison shows that the proposed method can produce the fuzzy model with higher accuracy than previous other studies.

  • PDF

Structure Identification of a Neuro-Fuzzy Model Can Reduce Inconsistency of Its Rulebase

  • Wang, Bo-Hyeun;Cho, Hyun-Joon
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.17 no.2
    • /
    • pp.276-283
    • /
    • 2007
  • It has been shown that the structure identification of a neuro-fuzzy model improves their accuracy performances in a various modeling problems. In this paper, we claim that the structure identification of a neuro-fuzzy model can also reduce the degree of inconsistency of its fuzzy rulebase. Thus, the resulting neuro-fuzzy model serves as more like a structured knowledge representation scheme. For this, we briefly review a structure identification method of a neuro-fuzzy model and propose a systematic method to measure inconsistency of a fuzzy rulebase. The proposed method is applied to problems or fuzzy system reproduction and nonlinear system modeling in order to validate our claim.

A Robust Learning Algorithm for System Identification (외란을 포함한 학습 데이터에 강인한 시스템 모델링)

  • 한상현;윤중선
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.200-200
    • /
    • 2000
  • Highly nonlinear dynamical systems are easily identified using neural networks. When disturbances are included in the learning data set Int system modeling, modeling process will be poorly performed. Since the radial basis functions in the radial basis function network(RBFN) are centered at the points specified by the weights, RBF networks are robust for approximating the process including the narrow-band disturbances deviating significantly from the regular signals. To exclude(filter) these disturbances, a robust algorithm for system identification, based on the RBFN, is proposed. The performance of system identification excluding disturbances is investigated and compared with the one including disturbances.

  • PDF

Load Modeling of KTX Using Parameter Identification (파라미터 식별법에 의한 KTX의 부하모델링)

  • Kim, Joo-Rak;Shim, Keon-Bo;Kim, Jung-Hoon
    • Proceedings of the KIEE Conference
    • /
    • 2005.07b
    • /
    • pp.1634-1636
    • /
    • 2005
  • The electric load components have different characteristics against variation of voltage and frequency. This paper presents the load modeling of electric locomotive by the parameter identification method. Proposed method for load modeling is very simple and easy for application. Proposed load model of the electric locomotive is the combined load of the static and dynamic characteristic load. This load modeling is applied to the KTX to verify the effectiveness of the proposed method. The results of the proposed load modeling by parameter identification follow the field measurements very exactly.

  • PDF

Fuzzy Relation-Based Fuzzy Neural-Networks Using a Hybrid Identification Algorithm

  • Park, Ho-Seung;Oh, Sung-Kwun
    • International Journal of Control, Automation, and Systems
    • /
    • v.1 no.3
    • /
    • pp.289-300
    • /
    • 2003
  • In this paper, we introduce an identification method in Fuzzy Relation-based Fuzzy Neural Networks (FRFNN) through a hybrid identification algorithm. The proposed FRFNN modeling implement system structure and parameter identification in the efficient form of "If...., then... " statements, and exploit the theory of system optimization and fuzzy rules. The FRFNN modeling and identification environment realizes parameter identification through a synergistic usage of genetic optimization and complex search method. The hybrid identification algorithm is carried out by combining both genetic optimization and the improved complex method in order to guarantee both global optimization and local convergence. An aggregate objective function with a weighting factor is introduced to achieve a sound balance between approximation and generalization of the model. The proposed model is experimented with using two nonlinear data. The obtained experimental results reveal that the proposed networks exhibit high accuracy and generalization capabilities in comparison to other models.er models.

The Combined Load Modeling based on the System Identification (시스템 식별법에 의한 복합 부하 모델링)

  • Shim, Keon-Bo;Kim, Joo-Rak;Oh, Im-Geol
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2007.05a
    • /
    • pp.260-264
    • /
    • 2007
  • Many load modeling concepts have been proposed in the past. Efforts of load modeling may be summarized into three approaches ; the first one is to find an aggregation of various different load components scattered and distributed in an area. The second one is to find parameters to represent load from field tests, if any. And the third one is how to present the load of motor components could be represented. This paper proposes a system identification of combined load modeling to cover the second approach. In this paper, an improved method of system identification is suggested for the combined load model (dynamic and static load model) in which parameters of the equivalent induction motor. polynomial type load and their compositions.

  • PDF

GENERALISED PARAMETERS TECHNIQUE FOR IDENTIFICATION OF SEASONAL ARMA (SARMA) AND NON SEASONAL ARMA (NSARMA) MODELS

  • M. Sreenivasan;K. Sumathi
    • Journal of applied mathematics & informatics
    • /
    • v.4 no.1
    • /
    • pp.135-135
    • /
    • 1997
  • Times series modeling plays an important role in the field of engineering, Statistics, Biomedicine etc. Model identification is one of crucial steps in the modeling of an AutoRegreesive Moving Average(ARMA(p, q)) process for real world problems. Many techniques have been developed in the literature (Salas et al., McLeod et al. etc.) for the identification of an ARMA(p, q) Model. In this paper, a new technique called The Generalised Parameters Technique is formulated for seasonal and non-seasonal ARMA model identification. This technique is very simple and can e applied to any given time series. Initial estimates of the AR parameters of the ARMA model are also obtained by this method. This model identification technique is validated through many theoretical and simulated examples.