• Title/Summary/Keyword: Ideal

Search Result 6,789, Processing Time 0.029 seconds

GENERAL TYPES OF (α,β)-FUZZY IDEALS OF HEMIRINGS

  • Jun, Y.B.;Dudek, W.A.;Shabir, M.;Kang, Min-Su
    • Honam Mathematical Journal
    • /
    • v.32 no.3
    • /
    • pp.413-439
    • /
    • 2010
  • W. A. Dudek, M. Shabir and M. Irfan Ali discussed the properties of (${\alpha},{\beta}$)-fuzzy ideals of hemirings in [9]. In this paper, we discuss the generalization of their results on (${\alpha},{\beta}$)-fuzzy ideals of hemirings. As a generalization of the notions of $({\alpha},\;\in{\vee}q)$-fuzzy left (right) ideals, $({\alpha},\;\in{\vee}q)$-fuzzy h-ideals and $({\alpha},\;\in{\vee}q)$-fuzzy k-ideals, the concepts of $({\alpha},\;\in{\vee}q_m)$-fuzzy left (right) ideals, $({\alpha},\;\in{\vee}q_m)$-fuzzy h-ideals and $({\alpha},\;\in{\vee}q_m)$-fuzzy k-ideals are defined, and their characterizations are considered. Using a left (right) ideal (resp. h-ideal, k-ideal), we construct an $({\alpha},\;\in{\vee}q_m)$-fuzzy left (right) ideal (resp. $({\alpha},\;\in{\vee}q_m)$-fuzzy h-ideal, $({\alpha},\;\in{\vee}q_m)$-fuzzy k-ideal). The implication-based fuzzy h-ideals (k-ideals) of a hemiring are considered.

21st century Female's Ideal Beauty & Formative Characteristics of Fashion Design (21세기의 이상적 여성미와 패션디자인의 조형적 특성)

  • Lee, Kwan-Yi
    • Fashion & Textile Research Journal
    • /
    • v.14 no.3
    • /
    • pp.371-380
    • /
    • 2012
  • Based on results using factor analysis, Women's definition of "Ideal beauty" can be materialize into four key factors, "Confident beauty", "Graceful beauty", "Lively beauty", and "Genuine beauty". Factor analysis was conducted to materialize Women's definition of "Ideal beauty"and the above four factors were representative of 56.31% of total variance. "Ideal beauty" defined by age category was also found significant difference, indicating existence of different "Ideal beauty "definition for age groups. Itemized age category's "Ideal beauty" definitions are as follows, 18-22 years, bright and lively, 23-27 years, cute and confident, 28-32 years, sensible and confident 33-37 years, hard-working, 38-42 years, ability and composure, 43-47 years, casual and graceful, 48-52 years, refined and noble, 53 years and above, healthy and proper as "Ideal beauty" definitions. The defined "ideal beauty" was steadily shifted with age group. Women 38 years and younger were defined external attributes to "Ideal beauty", as women 38 years and older were defined inner attributes to "Ideal beauty". Women's definition of "Ideal beauty" can materialize into four key factors, "Confident beauty", "Graceful beauty", "Lively beauty", and "Genuine beauty".

SOME REMARKS ON PRIMAL IDEALS

  • Kim, Joong-Ho
    • Bulletin of the Korean Mathematical Society
    • /
    • v.30 no.1
    • /
    • pp.71-77
    • /
    • 1993
  • Every ring considered in the paper will be assumed to be commutative and have a unit element. An ideal A of a ring R will be called primal if the elements of R which are zero divisors modulo A, form an ideal of R, say pp. If A is a primal ideal of R, P is called the adjoint ideal of A. The adjoint ideal of a primal ideal is prime [2]. The definition of primal ideals may also be formulated as follows: An ideal A of a ring R is primal if in the residue class ring R/A the zero divisors form an ideal of R/A. If Q is a primary idel of a ring R then every zero divisor of R/Q is nilpotent; therefore, Q is a primal ideal of R. That a primal ideal need not be primary, is shown by an example in [2]. Let R[X], and R[[X]] denote the polynomial ring and formal power series ring in an indeterminate X over a ring R, respectively. Let S be a multiplicative system in a ring R and S$^{-1}$ R the quotient ring of R. Let Q be a P-primary ideal of a ring R. Then Q[X] is a P[X]-primary ideal of R[X], and S$^{-1}$ Q is a S$^{-1}$ P-primary ideal of a ring S$^{-1}$ R if S.cap.P=.phi., and Q[[X]] is a P[[X]]-primary ideal of R[[X]] if R is Noetherian [1]. We search for analogous results when primary ideals are replaced with primal ideals. To show an ideal A of a ring R to be primal, it sufficies to show that a-b is a zero divisor modulo A whenever a and b are zero divisors modulo A.

  • PDF

A Note on Regular Ternary Semirings

  • Dutta, Tapan Kumar;Kar, Sukhendu
    • Kyungpook Mathematical Journal
    • /
    • v.46 no.3
    • /
    • pp.357-365
    • /
    • 2006
  • This paper is a sequel of our previous paper [1]. In this paper, we introduce the notions of regular ideal and partial ideal ($p$-ideal) in a ternary semiring and using these two notions we characterize regular ternary semiring.

  • PDF

FALLING FUZZY BCI-COMMUTATIVE IDEALS

  • Jun, Young Bae;Song, Seok-Zun
    • Honam Mathematical Journal
    • /
    • v.36 no.3
    • /
    • pp.555-568
    • /
    • 2014
  • On the basis of the theory of a falling shadow and fuzzy sets, the notion of a falling fuzzy BCI-commutative ideal of a BCI-algebra is introduced. Relations between falling fuzzy BCI-commutative ideals and falling fuzzy ideals are given. Relations between fuzzy BCI-commutative ideals and falling fuzzy BCI-commutative ideals are provided. Characterizations of a falling fuzzy BCI-commutative ideal are established, and conditions for a falling fuzzy (closed) ideal to be a falling fuzzy BCI-commutative ideal are considered.

IDEAL THEORY IN ORDERED SEMIGROUPS BASED ON HESITANT FUZZY SETS

  • Ahn, Sun Shin;Lee, Kyoung Ja;Jun, Young Bae
    • Honam Mathematical Journal
    • /
    • v.38 no.4
    • /
    • pp.783-794
    • /
    • 2016
  • The notions of hesitant fuzzy left (resp., right, bi-, quasi-) ideals are introduced, and several properties are investigated. Relations between a hesitant fuzzy left (resp., right) ideal,a hesitant fuzzy bi-ideal and a hesitant fuzzy quasi-ideal are discussed. Characterizations of hesitant fuzzy left (resp., right, bi-, quasi-) ideals are considered.

Operators in L(X,Y) in which K(X,Y) is a semi M-ideal

  • Cho, Chong-Man
    • Bulletin of the Korean Mathematical Society
    • /
    • v.29 no.2
    • /
    • pp.257-264
    • /
    • 1992
  • Since Alfsen and Effors [1] introduced the notion of an M-ideal, many authors [3,6,9,12] have worked on the problem of finding those Banach spaces X and Y for which K(X,Y), the space of all compact linear operators from X to Y, is an M-ideal in L(X,Y), the space of all bounded linear operators from X to Y. The M-ideal property of K(X,Y) in L(X,Y) gives some informations on X,Y and K(X,Y). If K(X) (=K(X,X)) is an M-ideal in L(X) (=L(X,X)), then X has the metric compact approximation property [5] and X is an M-ideal in $X^{**}$ [10]. If X is reflexive and K(X) is an M-ideal in L(X), then K(X)$^{**}$ is isometrically isomorphic to L(X)[5]. A weaker notion is a semi M-ideal. Studies on Banach spaces X and Y for which K(X,Y) is a semi M-ideal in L(X,Y) were done by Lima [9, 10].

  • PDF

PRIME RADICALS OF SKEW LAURENT POLYNOMIAL RINGS

  • Han, Jun-Cheol
    • Bulletin of the Korean Mathematical Society
    • /
    • v.42 no.3
    • /
    • pp.477-484
    • /
    • 2005
  • Let R be a ring with an automorphism 17. An ideal [ of R is ($\sigma$-ideal of R if $\sigma$(I).= I. A proper ideal P of R is ($\sigma$-prime ideal of R if P is a $\sigma$-ideal of R and for $\sigma$-ideals I and J of R, IJ $\subseteq$ P implies that I $\subseteq$ P or J $\subseteq$ P. A proper ideal Q of R is $\sigma$-semiprime ideal of Q if Q is a $\sigma$-ideal and for a $\sigma$-ideal I of R, I$^{2}$ $\subseteq$ Q implies that I $\subseteq$ Q. The $\sigma$-prime radical is defined by the intersection of all $\sigma$-prime ideals of R and is denoted by P$_{(R). In this paper, the following results are obtained: (1) For a principal ideal domain R, P$_{(R) is the smallest $\sigma$-semiprime ideal of R; (2) For any ring R with an automorphism $\sigma$ and for a skew Laurent polynomial ring R[x, x$^{-1}$; $\sigma$], the prime radical of R[x, x$^{-1}$; $\sigma$] is equal to P$_{(R)[x, x$^{-1}$; $\sigma$ ].

PRIME RADICALS IN ORE EXTENSIONS

  • Han, Jun-Cheol
    • East Asian mathematical journal
    • /
    • v.18 no.2
    • /
    • pp.271-282
    • /
    • 2002
  • Let R be a ring with an endomorphism $\sigma$ and a derivation $\delta$. An ideal I of R is ($\sigma,\;\delta$)-ideal of R if $\sigma(I){\subseteq}I$ and $\delta(I){\subseteq}I$. An ideal P of R is a ($\sigma,\;\delta$)-prime ideal of R if P(${\neq}R$) is a ($\sigma,\;\delta$)-ideal and for ($\sigma,\;\delta$)-ideals I and J of R, $IJ{\subseteq}P$ implies that $I{\subseteq}P$ or $J{\subseteq}P$. An ideal Q of R is ($\sigma,\;\delta$)-semiprime ideal of R if Q is a ($\sigma,\;\delta$)-ideal and for ($\sigma,\;\delta$)-ideal I of R, $I^2{\subseteq}Q$ implies that $I{\subseteq}Q$. The ($\sigma,\;\delta$)-prime radical (resp. prime radical) is defined by the intersection of all ($\sigma,\;\delta$)-prime ideals (resp. prime ideals) of R and is denoted by $P_{(\sigma,\delta)}(R)$(resp. P(R)). In this paper, the following results are obtained: (1) $P_{(\sigma,\delta)}(R)$ is the smallest ($\sigma,\;\delta$)-semiprime ideal of R; (2) For every extended endomorphism $\bar{\sigma}$ of $\sigma$, the $\bar{\sigma}$-prime radical of an Ore extension $P(R[x;\sigma,\delta])$ is equal to $P_{\sigma,\delta}(R)[x;\sigma,\delta]$.

  • PDF