A Note on Regular Ternary Semirings

  • Received : 2005.02.08
  • Published : 2006.09.23

Abstract

This paper is a sequel of our previous paper [1]. In this paper, we introduce the notions of regular ideal and partial ideal ($p$-ideal) in a ternary semiring and using these two notions we characterize regular ternary semiring.

Keywords

References

  1. T. K. Dutta and S. Kar, On Regular Ternary Semirings, Advances in Algebra, Proceedings of the ICM Satellite Conference in Algebra and Related Topics, World Scientific (2003), 343-355.
  2. T. K. Dutta and S. Kar, On Prime Ideals And Prime Radical of Ternary Semirings, Bull. Cal. Math. Soc., 97(5)(2005), 445-454.
  3. T. K. Dutta and S. Kar, On Semiprime Ideals And Irreducible Ideals Of Ternary Semirings, Bull. Cal. Math. Soc., 97(5)(2005), 467-476.
  4. T. K. Dutta and S. Kar, On Ternary Semifields, Discussiones Mathematicae - General Algebra and Applications, 24(2)(2004), 185-198. https://doi.org/10.7151/dmgaa.1084
  5. T. K. Dutta and S. Kar, On The Jacobson Radical of A Ternary Semiring, Southeast Asian Bulletin of Mathematics, 28(1)(2004), 1-13.
  6. T. K. Dutta and S. Kar, A Note On The Jacobson Radical of a Ternary Semiring, Southeast Asian Bulletin of Mathematics, 29(2)(2005), 321-331.
  7. T. K. Dutta and S. Kar, Two Types of Jacobson Radicals of Ternary Semirings, Southeast Asian Bulletin of Mathematics, 29(4)(2005), 677-687.
  8. S. N. Il'in, Regularity Criterion for Complete Matrix Semirings, Mathematical Notes, 70(3)(2001), 329-336. (Translated from Matematicheskie Zametki, 70(3)(2001), 366-374). https://doi.org/10.1023/A:1012391611309
  9. D. H. Lehmer, A ternary analogue of abelian groups, American Journal of Mathematics, 59(1932), 329-338.
  10. W. G. Lister, Ternary Rings, Trans. Amer. Math. Soc., 154(1971), 37-55. https://doi.org/10.1090/S0002-9947-1971-0272835-6
  11. J. Los, On the extending of models I, Fundamenta Mathematicae, 42(1955), 38-54. https://doi.org/10.4064/fm-42-1-38-54
  12. M. L. Santiago, Some contributions to the study of ternary semigroups and semiheaps, (Ph.D. Thesis, 1983, University of Madras).
  13. F. M. Sioson, Ideal theory in ternary semigroups, Math. Japonica, 10(1965), 63-84.
  14. V. Tamas, Regular ternary rings, An. Stiin. Univ. Al. I. Cuza. Ia si Sec. Ia Mat., 33(2)(1987), 89-92.