References
- C. Baikoussis and D. E. Blair, On Legendre curves in contact 3-dimensional manifolds, Geometria Dedicata, 49(1994), 135-142. https://doi.org/10.1007/BF01610616
- M. Belkhelfa, R. Deszcz, M. Glogowska, M. Hotlos, D. Kowalczyk, and L. Verstraelen, On some type of curvature conditions, in: Banach Center Publ., Inst. Math. Polish Acad. Sci., 57(2002), 179-194.
- L. Bianchi, Lezioni sulla teoria dei gruppi continui di transformazioni, Editioni Zanichelli, Bologna, 1928.
- D. E. Blair, Contact manifolds in Riemannian Geometry, Lecture Notes in Math., vol. 509, Springer-Verlag, 1976.
-
D. E. Blair, T. Koufogiorgos, and S. Ramesh, A classification of 3-dimensional contact metric manifolds with
$Q{\phi}={\phi}Q$ , Kodai Math. J., 13(3)(1990), 391-401. https://doi.org/10.2996/kmj/1138039284 - F. Borghero and R. Caddeo, Une structure de separabilite et geodesiques dans les huit geometries tridimensionelles de Thurston, Rend. Mat. Appl Ser., 9(4)(1989), 607-624.
- R. Caddeo, P. Piu, and A. Ratto, So(2)-invariant minimal and constant mean curvature surfaces in 3-dimensional homogeneous spaces, Manuscripta Math., 87(1995), 1-12. https://doi.org/10.1007/BF02570457
- E. Cartan, Lecons sur la geometrie des espaces de Riemann, second ed., Gauthier-Villards Paris, 1946.
- J. E. D'Atri and H. K. Nickerson, Divergence preserving geodesic symmetries, J. Diff. Geom., 3(1969), 467-476. https://doi.org/10.4310/jdg/1214429067
- R. Deszcz, On pseudosymmetric spaces, Bull. Soc. Math. Belg., 44(ser. A)(1992), 1-34.
- R. Deszcz, Curvature proprerties of certain compact pseudosymmetric manifolds, Colloq. Math., 65(1993), 139-147. https://doi.org/10.4064/cm-65-1-139-147
- R. Deszcz, On pseudosymmetric manifolds, Dept. Math., Agricultural Univ.Wroclaw, Ser. A, Theory and Methods, Report No. 34, (1995).
- R. Deszcz, On the equivalence of Ricci-semisymmetry and semisymmetry, Dept. Math., Agricultural Univ. Wroclaw, Ser. A, Theory and Methods, Report, No. 64, (1998).
- R. Deszcz, L. Verstraelen, and S. Yaprak, Pseudosymmetric hypersurfaces in 4- dimensional spaces of constant curvature, Bull. Inst. Math. Acad. Sinica, 22(1994), 167-179.
- J. Inoguchi, Minimal surfaces in 3-dimensional solvable Lie groups, Chin. Ann. Math., 24B(2003), 73-84.
- O. Kowalski, Space with volume preserving symmetries and related classes of Riemannian manifolds, Rend. Sem. Math. Torino, Fasc. Spec., (1983), 131-159.
- S. Maier, Conformal flatness and self-duality of Thurston-geometries, Proc. Am. Math. Soc., 4(1998), 1165-1172.
- B. O'Neill, Semi-Riemannian Geometry with Applications to Relativity, Academic Press, New York, 1983.
- D. Perrone, Torsion and critical metrics on contact three-manifolds, Kodai Math. J., 13(1990), 88-100. https://doi.org/10.2996/kmj/1138039163
- P. Piu, Sur certain types de distributions non integrables totalement geodesiques, Ph.D. thesis.
- P. Scott, The geometries of 3-manifolds, Bull. Lond. Math. Soc., 15(1983), 401-487. https://doi.org/10.1112/blms/15.5.401
- W. M. Thurston, Three-dimensional Geometry and Topology, Silvio Levy ed., vol. 1, Princeton University Press, 1997.
- L. Verstraelen, Comments on pseudo-symmetry in sense of R. Deszcz, in: Geometry and Topology of Submanifolds, World Sci. Singapore, VI(1994), 199-209.
- G. Vranceanu, Lecons de geometrie differentielle, Acad. R. P. Roumanie ed., 1957.
- T. J. Willmore, Riemannian Geometry, Clarendon Press, Oxford, 1993.
- S. Yaprak, Intrinsic and extrinsic differential geometry concerning conditions of pseudo-symmetry, Ph.D. thesis, K.U.Leuven, 1993.