• Title/Summary/Keyword: ITO thickness

Search Result 342, Processing Time 0.031 seconds

Effect of ZnO Buffer Layers on the Crystallization of ITO Thin Film at Low Temperature

  • Seong, Chung-Heon;Shin, Yong-Jun;Jang, Gun-Eik
    • Transactions on Electrical and Electronic Materials
    • /
    • v.13 no.4
    • /
    • pp.208-211
    • /
    • 2012
  • In the present study, a ZnO thin film, as a buffer layer of ITO (indium tin oxide) film was deposited on glass substrates by RF magnetron sputtering at low temperature of $150^{\circ}C$. In order to estimate the optical characteristics and compare with the experimental results in Glass/ZnO(100 nm)/ITO(35 nm) multilayered film, the simulation program, EMP (Essential Macleod Program) was adopted. The sheet resistance and optical transmittance of the films were measured using the four-point probe method and spectrophotometer, respectively. From X-ray diffraction patterns, all the films deposited at $150^{\circ}C$ demonstrated only the amorphous phase. Optical transmittance was the highest at a ZnO thickness of 100 nm. The ITO(35 nm)/ZnO(100 nm) film exhibits an optical transmittance of >92% at 550 nm. The multilayered film showed an electrical sheet resistance of 407 ${\Omega}/sq.$, which is significantly better than that of a single-layer ITO film without a ZnO buffer layer (815 ${\Omega}/sq.$).

Effect of Substrate Temperature on Characteristics of IZTO and ITO Thin Films Deposited by Pulsed DC Magnetron Sputtering System

  • Lee, Chang-Hun;Bae, Jung-Ae;Ko, Yoon-Duk;Kim, Joo-Yeob;Joung, Hong-Chan;Choi, Byung-Hyun;Ji, Mi-Jung;Kim, Young-Sung
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.92-92
    • /
    • 2011
  • IZTO and ITO thin films with a thickness of 200nm were deposited on Corning glass substrate to investigate the effects of substrate temperature on their electrical and optical properties by using pulsed DC magnetron sputtering with a sintered ceramic target of IZTO (In2O3 70 wt.%, ZnO 15 wt.%, SnO2 15 wt.%) and ITO (In2O3 90 wt.%, SnO2 10 wt.%). We investigated the structural, electrical, and optical properties of IZTO and ITO films. The structural and electrical properties of both films are sensitive on the substrate temperature. As the substrate temperature is increased, the electrical resistivity of ITO films is improved, but that of IZTO film increase over than $100^{\circ}C$. All IZTO and ITO thin films have good optical properties, which showed an average of transmittance over 80%. As a result, IZTO films can be a possible material for flexible display due to the low processing temperature.

  • PDF

A Study on the Electrical Properties of ITO Thin Films with Various Oxygen Gas Flow Rate (산소 가스 유량비 변화에 따른 ITO 박막의 전기적 특성에 관한 연구)

  • Choi, Dong-H.;Keum, Min-J.;Jean, A.R.;Han, Jean-G.
    • Journal of Surface Science and Engineering
    • /
    • v.40 no.3
    • /
    • pp.144-148
    • /
    • 2007
  • To prepare the transparent electrode for electronic devices such as flat panel or flexible displays, solar cells, and touch panels; tin doped $In_2O_3$ (ITO) films with low resistivity and a high transparency were fabricated using a facing target sputtering (FTS) system at the various oxygen gas flow rate. The carrier concentration and mobility of ITO films were measured by Hall Effect measurement. And the transmittance was measured using the UV-VIS spectrometer. As a result, we can obtain the ITO thin films prepared at 10% oxygen gas flow ratio, thickness 150 nm with transmittance 85% and resistivity $8.1{\times}10^{-4}{\Omega}cm$ and surface roughness 5.01 nm.

Laser Patterning of Indium Tin Oxide for Flat Panel Display (평판디스플레이를 위한 Indium Tin Oxide의 레이저 페터닝)

  • Ahn, Min-young;Lee, Kyoung-cheol;Lee, Cheon
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.07a
    • /
    • pp.340-343
    • /
    • 2000
  • ITO(Indium Tin Oxide) films for transparent electrodes of FPD(Flat Panel Display) were patterned in atmosphere using laser. A pulse type(repetition rate of 10 Hz) Q-switched Nd:YAG laser which can generate the fundamental wavelength at 1064 nm or its harmonics(532, 266 nm) was used for Patterning of the ITO film. In case of using the second harmonic(532 nm) of Nd:YAG laser, the ITO film(thickness of 20 nm) was removed clearly with a laser fluence of 5.2 J/$\textrm{cm}^2$ and a beam scan speed of 200${\mu}{\textrm}{m}$/s. But the glass substrate was damaged when the laser fluence was over 5.2 J/$\textrm{cm}^2$. We discussed the etching mechanism of the ITO film using Nd:YAG laser with observation of the etching characteristics including a depths and widths of ITO films as a function of laser fluence using SEM(Scanning Electron Microscopy) and surface profiler($\alpha$-step 500).

  • PDF

Measurement of Step Difference using Digital Holography of ITO Thin Film Fabricated by Sputtering Method (스퍼터링 공법으로 제작한 ITO 박막의 디지털 홀로그래피를 이용한 단차에 대한 측정)

  • Jung, Hyun Il;Shin, Ju Yeop;Park, Jong Hyun;Jung, Hyunchul;Kim, Kyeong-suk
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.20 no.9
    • /
    • pp.84-89
    • /
    • 2021
  • Indium tin oxide (ITO) transparent electrodes, which are used to manufacture organic light-emitting diodes, are used in light-emitting surface electrodes of display EL panels such as cell phones and TVs, liquid crystal panels, transparent switches, and plane heating elements. ITO is a major component that consists of indium and tin and is advantageous in terms of obtaining sheet resistance and light transmittance in a thin film. However, the optical performance of devices decreases with an increase in its thickness. A digital holography system was constructed and measured for the step measurement of the ITO thin film, and the reliability of the technique was verified by comparing the FE-SEM measurement results. The error rate of the step difference measurement was within ±5%. This result demonstrated that this technique is useful for applications in advanced MEMS and NEMS industrial fields.

Synthesis of Phenanthridine-Containing Conjugated Copolymer and OLED Device Properties

  • Park, Lee-Soon;Jeong, Young-Chul;Han, Yoon-Soo;Kim, Sang-Dae;Kwon, Young-Hwan
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.588-591
    • /
    • 2004
  • Polyazomethine type conjugated copolymers containing phenanthridine units, poly(PZ-PTI), were synthesized by Schiff-base reaction. This new conjugated copolymer exhibited improved solubility in common organic solvents due to the presence of alkyl side chains as well as phenanthridine groups. Double layer (ITO/poly(PZ-PTI)/$Alq_3$/Mg) light emitting diode (LED) exhibited enhanced EL emission and efficiency compared to that of single layer (ITO/poly(PZ-PTI)/Mg) LED. With increasing the thickness of $Alq_3$ layer in double layer (ITO/poly(PZ-PTI)/$Alq_3$/Mg) LED the emission peak gradually shifted to the single layer (ITO/$Alq_3$/Mg) LED, confirming good hole transporting behaviour of the synthesized conjugated copolymer.

  • PDF

Fabrication and Characteristics of Thermopneumatic-Actuated Polydimethylsiloxane Microvalve (열공압 방식의 Polydimethylsiloxane 마이크로 밸브의 제작 및 특성)

  • 김진호;조주현;한경희;김영호;김한수;김용상
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.53 no.4
    • /
    • pp.231-236
    • /
    • 2004
  • A normally open thermopneumaticc-actuated microvalve has been fabricated and their properties are investigated. The advantages of the proposed microvalve are of the low cost fabrication process and the transparent optical property using polydimethylsiloxane (PDMS) and indium tin oxide (ITO) glass. The fabricated microvalves with in-channel configuration are easily integrated with other microfluidic devices on the same substrate. The fabrication process of thermopneumatic-actuated microvalvesusing PDMS is very simple and its performance is very suitable for a disposable lab-on-a-chip. The PDMS membrane deflection increases and the flow rates of the microchannel with microvalvels decrease as the applied power to the ITO heater increases. The powers at flow-off are dependent on the membrane thickness and the applied inlet pressure but are independent of the channel width of microvalves. The flow rate is well controlled by the switching function of ITO heater and the closing/opening times are around 20 sec and 25 sec, respectively.

Chromaticity (b*) and Transmittance of ITO Thin Films Deposited on PET Substrate by Using Roll-to-Roll Sputter System (롤투롤 스퍼터를 이용하여 PET 기판 위에 제조된 ITO 박막의 색도(b*) 및 투과도 연구)

  • Seo, Sung-Man;Kang, Bo-Gab;Kim, Hu-Sik;Lim, Woo-Taik;Choi, Sik-Young
    • Korean Journal of Materials Research
    • /
    • v.19 no.7
    • /
    • pp.376-381
    • /
    • 2009
  • Indium Tin Oxide (ITO) thin films on Polyethylene Terephtalate (PET) substrate were prepared by Roll-to-Roll sputter system with targets of 5 wt% and 10 wt% $SnO_2$ at room temperature. The influence of the chromaticity (b*) and transmittance properties of the ITO Films were investigated. The ITO thin films were deposited as a function of the DC power, rolling speed, and Ar/$O_2$ gas flow ratio, and then characterized by spectrophotometer. Their crystallinity and surface resistance were also analyzed by X-ray diffractometer and 4-point probe. As a result, the chromaticity (b*) and transmittance of the ITO films were broadly dependent on the thickness, which was controlled by the rolling speed. When the ITO films were prepared with the DC power of 300 W and the Ar/$O_2$ gas flow ratio of 30/1 sccm using 10 wt% $SnO_2$ target as a function of the rolling speeds 0.01 through 0.10 m/min, its chromaticity (b*) and transmittance were about -4.01 to 11.28 and 75.76 to 86.60%, respectively. In addition, when the ITO films were deposited with the DC power of 400W and the Ar/$O_2$ gas flow ratio of 30/2 sccm used in 5 wt% $SnO_2$ target, its chromaticity (b*) and transmittance were about -2.98 to 14.22 and 74.29 to 88.52%, respectively.

Effect of Thermal Annealing on Nanoscale Thickness and Roughness Control of Gravure Printed Organic Light Emitting for OLED with PVK and $Ir(ppy)_3$

  • Lee, Hye-Mi;Kim, A-Ran;Kim, Dae-Kyoung;Cho, Sung-Min;Chae, Hee-Yeop
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2009.10a
    • /
    • pp.1511-1514
    • /
    • 2009
  • Organic light emitting layer in OLED device was formed by gravure printing process in this work. Organic surface coated by gravure printing typically showed relatively bad uniformity. Thickness and roughness control was characterized by applying various mixed solvents in this work. Poly (N-vinyl carbazole) (PVK) and fact-tris(2-phenylpyridine)iridium($Ir(ppy)_3$) are host dopant system materials. PVK was used as a host and Ir(ppy)3 as green-emitting dopant. To luminance efficiency of the plasma treatment on etched ITO glass and then PEDOT:PSS spin coated. The device layer structure of OLED devices is as follow Glass/ITO/PEDOT:PSS/PVK+Ir(ppy)3-Active layer /LiF/Al. It was printed by gravure printing technology for polymer light emitting diode (PLED). To control the thickness multi-printing technique was applied. As the number of the printing was increased the thickness enhancement was increased. To control the roughness of organic layer film, thermal annealing process was applied. The annealing temperature was varied from room temperature, $40^{\circ}C$, $80^{\circ}C$, to $120^{\circ}C$.

  • PDF

Ag thickness effect on electrical and optical properties of flexible IZTO/Ag/IZTO multilayer anode grown on PET

  • Nam, Ho-Jun;Cho, Sung-Woo;Kim, Han-Ki
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.11a
    • /
    • pp.379-379
    • /
    • 2007
  • The characteristics of indium-zinc-tin-oxide (IZTO)-Ag-IZTO multilayer grown on a PET substrate were investigated for flexible organic light-emitting diodes. The IZTO-Ag-IZTO (IAI) multilayer anode exhibited a remarkably reduced sheet resistance of 4 ohm/sq and a high transmittance of 84%, despite the very thin thickness of the IZTO (30 nm) layer. In addition, it was shown that electrical and optical properties of IAI anodes are critically dependent on the thickness of the Ag layer, due to the transition of Ag atoms from distinct islands to continuous films at a critical thickness (14 nm). Moreover, the IAI/PET sample showed more stable mechanical properties than an amorphous ITO/PET sample during the bending test due to the existence of a ductile Ag layer. The current density voltage-luminance characteristics of flexible OLEDs fabricated on an IAI/PET substrate was better than those of flexible OLEDs fabricated on an ITO/PET substrate. This indicates that IAI multilayer anodes are promising flexible and transparent electrodes for flexible OLEDs.

  • PDF