DOI QR코드

DOI QR Code

Chromaticity (b*) and Transmittance of ITO Thin Films Deposited on PET Substrate by Using Roll-to-Roll Sputter System

롤투롤 스퍼터를 이용하여 PET 기판 위에 제조된 ITO 박막의 색도(b*) 및 투과도 연구

  • Seo, Sung-Man (Department of Applied Chemistry, Andong National University) ;
  • Kang, Bo-Gab (Department of Applied Chemistry, Andong National University) ;
  • Kim, Hu-Sik (Department of Applied Chemistry, Andong National University) ;
  • Lim, Woo-Taik (Department of Applied Chemistry, Andong National University) ;
  • Choi, Sik-Young (Department of Applied Chemistry, Andong National University)
  • Published : 2009.07.27

Abstract

Indium Tin Oxide (ITO) thin films on Polyethylene Terephtalate (PET) substrate were prepared by Roll-to-Roll sputter system with targets of 5 wt% and 10 wt% $SnO_2$ at room temperature. The influence of the chromaticity (b*) and transmittance properties of the ITO Films were investigated. The ITO thin films were deposited as a function of the DC power, rolling speed, and Ar/$O_2$ gas flow ratio, and then characterized by spectrophotometer. Their crystallinity and surface resistance were also analyzed by X-ray diffractometer and 4-point probe. As a result, the chromaticity (b*) and transmittance of the ITO films were broadly dependent on the thickness, which was controlled by the rolling speed. When the ITO films were prepared with the DC power of 300 W and the Ar/$O_2$ gas flow ratio of 30/1 sccm using 10 wt% $SnO_2$ target as a function of the rolling speeds 0.01 through 0.10 m/min, its chromaticity (b*) and transmittance were about -4.01 to 11.28 and 75.76 to 86.60%, respectively. In addition, when the ITO films were deposited with the DC power of 400W and the Ar/$O_2$ gas flow ratio of 30/2 sccm used in 5 wt% $SnO_2$ target, its chromaticity (b*) and transmittance were about -2.98 to 14.22 and 74.29 to 88.52%, respectively.

Keywords

References

  1. Y. Leterrier, L. Medico, F. Demarco, J. -A. E. Manson, U. Betz, M. F. Escola, M. K. Olsson and F. Atamny, Thin Solid Films, 460, 156 (2004) https://doi.org/10.1016/j.tsf.2004.01.052
  2. T. Nakada, Y. Hirabayashi, T. Tokado, D. Ohmori and T. Mise, Solar Energy, 77, 739 (2004) https://doi.org/10.1016/j.solener.2004.08.010
  3. N. Kikuchi, E. Kusano, E. Kishio and A. Kinbara, Vaccum, 66, 365 (2002) https://doi.org/10.1016/S0042-207X(02)00156-2
  4. F. Kurdesau, G. Khripunov, A. F. da Cunha, M. Kaelin, A. N. Tiwari, J. Non-Cryst. Solids, 352, 1466 (2006) https://doi.org/10.1016/j.jnoncrysol.2005.11.088
  5. J. H. Lee, H. K. Jung, J. I. Lee, D. G. Lim, K. J. Yang, J. S. Yi and W. C. Song, Thin Solid Films, 516, 1634 (2008) https://doi.org/10.1016/j.tsf.2007.05.028
  6. C. Guillen and J. Herreo, Mater. Chem. Phys., 112, 641 (2008) https://doi.org/10.1016/j.matchemphys.2008.06.027
  7. S. W. Cho, K. H. Choi, J. H. Bae, J. M. Moon, J. A. Jeong, S. W. Jeong, N. J. Park and H. K. Kim, Kor. J. Mater. Res., 18(1), 32 (2008) https://doi.org/10.3740/MRSK.2008.18.1.032
  8. Y. L. Choi and S. H. Kim, J. Kor. Inst. Met. & Mater. 44(12), 844 (2006)
  9. T. maeda, Display, 5(9), 82 (1999)
  10. Y. L. Choi and S. H. Kim, J. Kor. Inst. Met. & Mater. 44(8), 562 (2006)
  11. C. H. Yi, Y. Shigesato, I. Yasui and S. Takaki, Jpn. J. Appl. Phys., 34, L244 (1995) https://doi.org/10.1143/JJAP.34.L244
  12. T. J. Vink, W. Walrave, J. L. C. Daams, P. C. Baarslag and J. E. A. M. Meerakker, Thin Solid Films, 266, 145 (1995) https://doi.org/10.1016/0040-6090(95)06818-X
  13. S. Muranaka, Y. Bando and T. Takada, Thin Solid Films, 151, 355 (1987) https://doi.org/10.1016/0040-6090(87)90134-9
  14. S. Muranaka, Jpn. J. Appl. Phys., 30, L2062 (1991) https://doi.org/10.1143/JJAP.30.L2062
  15. P. K. Song, Y. Shigesato, I. Yasui and C. W. Ow-Yang, Jpn. J. Appl. Phys., 37, 1870 (1998) https://doi.org/10.1143/JJAP.37.1870
  16. Y. L. Choi, S. H. Kim, J. Kor. Inst. Met. & Mater., 44(8), 569 (2006)