• Title/Summary/Keyword: ITO thickness

Search Result 342, Processing Time 0.022 seconds

Efficiency Improvement of Organic Light-emitting Diodes depending on Thickness of Hole Injection Materials

  • Kim, Weon-Jong;Yang, Jae-Hoon;Kim, Tag-Yong;Jeong, Joon;Lee, Young-Hwan;Hong, Jin-Woong;Park, Ha-Yong;Kim, Tae-Wan
    • Transactions on Electrical and Electronic Materials
    • /
    • v.6 no.5
    • /
    • pp.233-237
    • /
    • 2005
  • In the device structure of ITO/hole injection layer/N, N'-biphenyl-N, N'-bis-(1-naphenyl)-[1,1'-biphenyl]4,4'-diamine(NPB)/tris(8-hydroxyquinoline) aluminum$(Alq_3)/Al$, we investigated an effect of hole-injection materials (PTFE, PVK) on the electrical characteristics and efficiency of organic light-emitting diodes. A thermal evaporation was performed to make a thickness of NPB layer with a evaporation rate of $0.5\~1.0\;\AA/s$ in a base pressure of $5\times10^{-6}$ Torr. We measured current-voltage characteristics and efficiency with a thickness variation of hole-injection layer. The PTFE and PVK hole-injection layer improve a performance of the device in several aspects, such as good mechanical junction, reducing the operating voltage and energy band adjustment. Compared with the devices without a hole-injection layer, we have obtained that an optimal thickness of NPB was 20 nm in the device structure of $ITO/NPB/Alq_3/Al$. And using the PTFE or PVK hole-injection layer, the external quantum efficiencies of the devices were improved by $24.5\%\;and\;51.3\%$, respectively.

IZO/Ag/IZO Multilayers Prepared by Magnetron Sputtering for Flexible Transparent Film Heaters (마그네트론 스퍼터링 법을 이용한 IZO/Ag/IZO 다층 박막 투명 면상 발열체)

  • Park, So-Won;Gang, Dong-Ryeong;Kim, Na-Yeong;Hwang, Seong-Hun;Jeon, Seung-Hun;ZhaoPin, ZhaoPin;Kim, Tae-Hun;Kim, Seo-Han;Park, Cheol-U;Song, Pung-Geun
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2017.05a
    • /
    • pp.114.2-114.2
    • /
    • 2017
  • Transparent film heaters (TFHs) based on Joule heating are currently an active research area. However, TFHs based on an indium tin oxide (ITO) monolayer have a number of problems. For example, heating is concentrated in part of the device. Also, heating efficiency is low because it has high sheet resistance ($R_S$). Resistance of indium zinc oxide (IZO) is similar to ITO and it can be used to flexible applications due to its amorphous structure. To solve these problems, our study introduced hybrid layers of IZO/Ag/IZO deposited by magnetron sputtering, and the electrical, optical, and thermal properties were estimated for various thickness of the metal interlayer. It was found that the sheet resistance of the multilayer was mainly dependent on the thickness of the Ag layers. The $R_S$ of IZO(40)/Ag/IZO(40nm) multilayer was 5.33, 3.29, $2.15{\Omega}/{\Box}$ for Ag thickness of 10, 15, and 20nm, respectively, while the $R_S$ of an IZO monolayer(95nm) was $59.58{\Omega}/{\Box}$. The optical transmittance at 550nm for the IZO(95nm) monolayer is 81.6%, and for the IZO(40)/Ag/IZO(40nm) multilayers with Ag thickness 10, 15 and 20nm, is for 72.8, 78.6, and 63.9%, respectively. The defrost test showed that the film with the lowest RS had the highest heat generation rate (HGR) for the same applied voltage. The results indicated that IZO(40)/Ag(15)/IZO(40nm) multilayer has the best suitable property, which is a promising thin film heater for the application in vehicle windshield.

  • PDF

Effect on the Electrical Characteristics of OLEDs Depending on Amorphous Fluoropolymer (유기발광다이오드의 전기적 특성에 미치는 Teflon-AF의 영향)

  • Shim, Sang-Min;Han, Hyun-Suk;Kang, Yong-Gil;Kim, Weon-Jong;Hong, Jin-Woong
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.24 no.9
    • /
    • pp.750-754
    • /
    • 2011
  • In this research, the electric characteristic of organic light-emitting diodes(OLEDs) was studied depending on thickness of amorphous fluoropolymer(Teflon-AF) which is the material of hole injection layer to improve electric characteristic of OLEDs. Sample composition was fabricated in double layer. The basic structure was fabricated by ITO/tris(8-hydroxyquinoline) aluminum (Alq3)/Al and the 2 layer was fabricated by ITO/2,2-Bistrifluoromethyl-4,5-Difluoro-1,3-Dioxole(Teflon-AF)/tris(8-hydro xyquinoline) aluminum (Alq3)/Al. The experiment was carried with variation of thickness of Teflon-AF at 1.0, 2.0, 2.5, 3.0 nm. The result showed when Teflon-AF thickness was 2.5 nm, the electric and optical characteristic were well performed. Moreover, when it was compared with Teflon-AF without materials, it was improved 15.1 times more on luminance, 12.7 times more on luminous efficiency and 12.1 times more on external quantum efficiency. Therefore, OLEDs element with optimum hole injection layer reduced energy barrier and driving voltage, and confirmed that it improved efficiency widely.

Effects of Deposition Thickness and Oxygen Introduction Flow Rate on Electrical and Optical Properties of IZO Films (증착두께 및 산소도입속도가 IZO 필름의 전기 및 광학적 특성에 미치는 영향)

  • Park, Sung-Hwan;Ha, KiRyong
    • Applied Chemistry for Engineering
    • /
    • v.21 no.2
    • /
    • pp.224-229
    • /
    • 2010
  • Transparent conductive oxide films have been widely used in the field of flat panel display (FPD). Transparent conductive Indium Zinc Oxide (IZO) thin films with excellent chemical stability have attracted much attention as an alternative material for Indium Tin Oxide (ITO) films. In this study, using $In_2O_3$ and ZnO powder mixture with a ratio of 90 : 10 wt% as a target, IZO films are prepared on polynorbornene (PNB) substrates by electron beam evaporation. The effect of thickness and $O_2$ introduction flow rate on the optical, electrical, structural properties and surface composition of deposited IZO films were investigated by UV/Visible spectrophotometer, 4-point probe method, SEM, XRD and XPS.

Improvement of the luminous efficiency of organic light emitting diode using LiF anode buffer layer

  • Park, Won-Hyeok;Kim, Gang-Hun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2015.08a
    • /
    • pp.147-147
    • /
    • 2015
  • The multilayer structure of the organic light emitting diode has merits of improving interfacial characteristics and helping carriers inject into emission layer and transport easier. There are many reports to control hole injection from anode electrode by using transition metal oxide as an anode buffer layer, such as V2O5, MoO3, NiO, and Fe3O4. In this study, we apply thin films of LiF which is usually inserted as a thin buffer layer between electron transport layer(ETL) and cathode, as an anode buffer layer to reduce the hole injection barrier height from ITO. The thickness of LiF as an anode buffer layer is tested from 0 nm to 1.0 nm. As shown in the figure 1 and 2, the luminous efficiency versus current density is improved by LiF anode buffer layer, and the threshold voltage is reduced when LiF buffer layer is increased up to 0.6 nm then the device does not work when LiF thickness is close to 1.0 nm As a result, we can confirm that the thin layer of LiF, about 0.6 nm, as an anode buffer reduces the hole injection barrier height from ITO, and this results the improved luminous efficiency. This study shows that LiF can be used as an anode buffer layer for improved hole injection as well as cathode buffer layer.

  • PDF

Electroluminescent Properties of Organic Light-emitting Diodes with Hole-injection Layer of CuPc

  • Lee, Jung-Bok;Lee, Won-Jae;Kim, Tae-Wan
    • Transactions on Electrical and Electronic Materials
    • /
    • v.15 no.1
    • /
    • pp.41-44
    • /
    • 2014
  • Emission properties of the organic light-emitting diodes were investigated with the use of a hole-injection layer of copper(II)-phthalocyanine (CuPc). The manufactured device structure is indium-tin-oxide (ITO) (180 nm)/CuPc (0~50 nm)/N,N'-Bis(3-methylphenyl)-N,N'-diphenylbenzidine (TPD) (40 nm)/tris-(8-hydroxyquinoline) aluminum (III) ($Alq_3$) (60 nm)/Al(100 nm). We investigated the luminescence properties of $Alq_3$ which is affected by the CuPc hole-injection layer. Also, we studied the influence of light-emission properties in the structure of an ITO/CuPc/TPD/$Alq_3$/Al device depending on the several thicknesses of CuPc (0~50 nm) layer. As a result, it was found that the hole injection occurs smoothly in the device with 20 nm thick CuPc layer, and the properties become significantly worse in the device with a CuPc layer thickness higher than 40 nm. We studied the topography and external quantum efficiency depending on the layer thickness of CuPc. Also, we analyzed the electroluminescent characteristics in the low and high-voltage range.

Efficiency Improvement of the Organic Light-Emitting Diodes depending on Thickness Variation of Hole-Infection Materials (정공 주입 물질 두께 변화에 따른 유기 발광 다이오우드 효율 향상)

  • Kim, Weon-Jong;Lee, Young-Hwan;Cha, Ki-Ho;Lee, Sang-Kyo;Kim, Tae-Wan;Hong, Jin-Woong
    • Proceedings of the KIEE Conference
    • /
    • 2006.07c
    • /
    • pp.1291-1292
    • /
    • 2006
  • In the structure of ITO/HIL/$Alq_3$/Al device, we investigated an efficiency improvement of the Organic Light-Emitting Diodes depending on thickness variation of hole-injection layer. Using the thermal evaporation in a base vacuum $5{\times}10^{-5}$[Torr], we have measured efficiency after the $Alq_3$ was evaporated to 100 [nm] as a deposition rate $1.5[{\AA}/s]$. In optimal condition, when PTFE thickness increased from 0 to 3.0 [nm], we have obtained that an optimal thickness of PTFE was 2.5 [nm]. And using the PTFE, luminance efficiency and external quantum efficiency of the device were improved by 12.8 times and 11.1 times, respectively.

  • PDF

ZnTe:O/CdS/ZnO intermediate band solar cells grown on ITO/glass substrate by pulsed laser deposition

  • Lee, Kyoung Su;Oh, Gyujin;Kim, Eun Kyu
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2015.08a
    • /
    • pp.197.2-197.2
    • /
    • 2015
  • Low-cost, high efficiency solar cells are tremendous interests for the realization of a renewable and clean energy source. ZnTe based solar cells have a possibility of high efficiency with formation of an intermediated energy band structure by impurity doping. In this work, the ZnTe:O/CdS/ZnO structure was fabricated by pulsed laser deposition (PLD) technique. A pulsed (10 Hz) Nd:YAG laser operating at a wavelength of 266 nm was used to produce a plasma plume from an ablated a ZnTe target, whose density of laser energy was 4.5 J/cm2. The base pressure of the chamber was kept at a pressure of approximately $4{\times}10-7Torr$. ZnO thin film with thickness of 100 nm was grown on to ITO/glass, and then CdS and ZnTe:O thin film were grown on ZnO thin film. Thickness of CdS and ZnTe:O were 50 nm and 500 nm, respectively. During deposition of ZnTe:O films, O2 gas was introduced from 1 to 20 mTorr. For fabricating ZnTe:O/CdS/ZnO solar cells, Au metal was deposited on the ITO film and ZnTe:O by thermal evaporation method. From the fabricated ZnTe:O/CdS/ZnO solar cell, current-voltage characteristics was measured by using HP 4156-a semiconductor parameter analyzer. Finally, solar cell performance was measured using an Air Mass 1.5 Global (AM 1.5 G) solar simulator with an irradiation intensity of 100 mW cm-2.

  • PDF

Characteristics of Organic Light-Emitting Diodes using PECCP Langmuir-Blodgett(LB) Film as an Emissive Layer (PECCP LB 박막을 발광층으로 사용한 유기 발광 다이오드의 특성)

  • Lee, Ho-Sik;Lee, Won-Jae;Park, Jong-Wook;Kim, Tae-Wan;Dou--Yol Kang
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1999.11a
    • /
    • pp.111-114
    • /
    • 1999
  • Electroluminescence(EL) devices based on organic thin films have been attracted lots of interests in large-area light-emitting display. In this stuffy, an emissive layer was fabricated using Langmuir-Blodgett(LB) technique in organic light-emitting (OLEDs). This emissive organic material was synthesized and named PECCP[poly(3.6-N-2-ethylhexyl carbazolyl cyanoterephthalidene)] which has a strong electron donor group and an electron acceptor group in main chain repeated unit. This material has good solubility in common organic solvents such as chloroform. THF, etc, and has a good stability in air. The Langmuir-Blodgett(LB) technique has the advantage of precise control of the thickness down to the molecular scale, In particular, by varying the film thickness it is possible to investigate the metal/polymer interface. Optimum conditions for the LB film deposition are usually determined by investigating a relationship between a surface pressure $\pi$ and an effective are A occupied by one molecule on the subphase. The LB films were deposited on an indium-tin-oxide(ITO) glass at a surface pressure of 10 mN/m and dipping speed of 12 mm/min after spreading PECCP solution on distilled water surphase at room temperature, Cell structure was ITO/PECCP LB film/Alq$_3$/Al. We considered PECCP as a hole -transport layer inserted between the emissive layer and ITO. We also used Alq$_3$ as an emissive layer and an electron transport layer. We measured current-voltage(I-V) characteristics, UV/visible absorption, PL spectrum and EL spectrum of the OLEDs.

  • PDF

OLED소자를 위한 그래핀 투명전극에 대한 연구

  • Kim, Yeong-Hun;Park, Jun-Gyun;Jeong, Yeong-Jong;No, Yong-Han
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2015.08a
    • /
    • pp.237.1-237.1
    • /
    • 2015
  • OLED의 낮은 외부 광자 효율 문제를 해결하기 위해서는 발광층은 물론 전극 재료에 대한 연구가 함께 진행되어야 한다. 최근 플렉서블 디스플레이(Flexible Display) 분야에서 투명전극(Transparent Electrode)은 큰 주목을 받고 있다. 기존 전자소자의 투명전극으로는 인듐산화물(ITO, Indium Tin Oxide)이 널리 사용되어 왔으나, ITO의 주원료인 인듐(Indium)은 희소성으로 인해 앞으로 30년 후에 고갈될 것으로 예상되어 ITO를 대체할만한 투명전극 재료가 필요하게 되었다. 인듐이 포함되지 않은(Indium-free) 투명전극을 개발하려는 많은 연구들이 진행 중인데, 본 연구에서는 PEN(Polyethylene Naphthalate) 유연기판 상에 그래핀(Graphene)을 투명전극으로 구현하여 OLED의 효율을 높이는데 이용하고자 하였다. 화학 기상 증착(CVD, Chemical Vapor Deposition) 방법을 이용하여 Cu 호일 위에 그래핀을 성장시킨 후 PEN 유연기판에 전사하여 그래핀 투명전극을 구현하면서 그래핀 성장층을 단층 또는 다층으로 구분하여 성장시켜 각각의 투명전극을 구현해보았다. 유연기판 상의 그래핀의 상태를 확인하기 위해 라만 분광(Raman Spectroscopy) 분석을 이용하여 그래핀 고유의 라만 꼭지점(Raman peak)인 G 꼭지점(G peak: 1580 cm-1), 2D 꼭지점(2D peak: ~2700 cm-1)을 확인하였는데 그래핀 전사 상태가 양호하여 D 꼭지점(D peak: ~1360 cm-1)은 나타나지 않았다. 원자힘 현미경(AFM, Atomic Force Microscope) 분석을 통해 다층 및 단층 그래핀 표면의 거칠기(Roughness) 및 두께(Thickness)를 각각 확인할 수 있었고 자외선-가시광선 분광법(UV-Visible Spectroscopy) 분석으로 그래핀 투명전극과 유연기판의 투과도(Transmittance)를 분석하였으며, 단층 그래핀 투과도가 90%수준의 높은 값이 나타나 ITO보다 개선됨을 확인하였다. 그래핀 면저항은 TLM(Transmission Line Measurement)법을 통해 측정하였는데, 단층 그래핀의 경우 $800{\Omega}/{\square}$ 내외 수준임을 확인할 수 있었다. 본 연구에서는 근자외선 영역에서 높은 투과도와 우수한 전기적 특성을 가지는 그래핀 투명 전도성 전극 구조를 제안하고, 나아가 가시영역에서 ITO를 대체할 수 있는 투명 전도성 전극 물질을 개발함으로써 발광다이오드의 광효율을 높일 수 있는 투명 전도성 전극을 구현하였다.

  • PDF