• Title/Summary/Keyword: IT diffusion

Search Result 3,902, Processing Time 0.032 seconds

Effect of Preparation Conditions of PAN-based Carbon Fibers on Electrochemical Characteristics of Rechargeable Lithium ion Battery Anode (PAN계 탄소섬유 제조조건에 따른 리튬이온 이차전지 음극의 전기화학적 특성)

  • An K. W.;Lee J. K.;Lee S. W.;Kim Y. D.;Cho W. I.;Ju J. B.;Cho B. W.;Park D. G.;Yun K. S.
    • Journal of the Korean Electrochemical Society
    • /
    • v.2 no.2
    • /
    • pp.81-87
    • /
    • 1999
  • Poly-acrylonitrile (PAN) based carbon fibers were stabilized under various tensions in the presence of air at about $200^{\circ}C$ and sequentially carbonized under some different gas environments in the range of 700 to $1500^{\circ}C$. The prepared carbon fibers were used for rechargeable lithium ion battery anode to investigate preparation parameters effects on electrochemical characteristics. It was found that the tension during stabilization, carbonization temperature and gas atmospheres affect the carbon fiber properties such as conductivity, mechanical strength, surface morphology and diffusion coefficient of lithium ion, which are closely related to the on electrolchemical properties as well as the charge/discharge characteristics.

Particle Characteristics of Flame-Synthesized γ-Al2O3 Nanoparticles (화염법으로 제조된 감마-Al2O3 나노입자의 화염조건에 따른 입자특성 연구)

  • Lee, Gyo-Woo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.36 no.5
    • /
    • pp.509-515
    • /
    • 2012
  • In this study, ${\gamma}-Al_2O_3$ nanoparticles were synthesized by using coflow hydrogen diffusion flames. The synthesis conditions were varied with using several oxygen concentrations in the oxidizing air. The particle characteristics of the flame-synthesized $Al_2O_3$ nanoparticles were determined by examining the crystalline structure, shape, and specific surface area of the nanoparticles. The measured maximum centerline temperature of the flames ranged from 1507.8 K to 1998.7 K. The morphology and crystal structure of the $Al_2O_3$ nanoparticles were determined from SEM images and XRD analyses, respectively. The particle sizes were calculated from measured BET specific surface areas and ranged from 25 nm to 52 nm. From XRD analyses, it was inferred that a large number of the synthesized nanoparticles were ${\gamma}-Al_2O_3$ nanoparticles including ${\theta}-Al_2O_3$ nanoparticles.

A Review on Spray Characteristics of Bioethanol and Its Blended Fuels in CI Engines

  • No, Soo-Young
    • Journal of ILASS-Korea
    • /
    • v.19 no.4
    • /
    • pp.155-166
    • /
    • 2014
  • This review will be concentrated on the spray characteristics of bioethanol and its derived fuels such as ethanol-diesel, ethanol-biodiesel in compression ignition (CI) engines. The difficulty in meeting the severe limitations on NOx and PM emissions in CI engines has brought about many methods for the application of ethanol because ethanol diffusion flames in engine produce virtually no soot. The most popular method for the application of ethanol as a fuel in CI engines is the blending of ethanol with diesel. The physical properties of ethanol and its derivatives related to spray characteristics such as viscosity, density and surface tension are discussed. Viscosity and density of e-diesel and e-biodiesel generally are decreased with increase in ethanol content and temperature. More than 22% and 30% of ethanol addition would not satisfied the requirement of viscosity and density in EN 590, respectively. Investigation of neat ethanol sprays in CI engines was conducted by very few researchers. The effect of ambient temperature on liquid phase penetration is a controversial topic due to the opposite result between two studies. More researches are required for the spray characteristics of neat ethanol in CI engines. The ethanol blended fuels in CI engines can be classified into ethanol-diesel blend (e-diesel) and ethanol-biodiesel (e-biodiesel) blend. Even though dodecanol and n-butanol are rarely used, the addition of biodiesel as blend stabilizer is the prevailing method because it has the advantage of increasing the biofuel concentration in diesel fuel. Spray penetration and SMD of e-diesel and e-biodiesel decrease with increase in ethanol concentration, and in ambient pressure. However, spray angle is increased with increase in the ethanol percentage in e-diesel. As the ambient pressure increases, liquid phase penetration was decreased, but spray angle was increased in e-diesel. The increase in ambient temperature showed the slight effect on liquid phase penetration, but spray angle was decreased. A numerical study of micro-explosion concluded that the optimum composition of e-diesel binary mixture for micro-explosion was approximately E50D50, while that of e-biodiesel binary mixture was E30B70 due to the lower volatility of biodiesel. Adding less volatile biodiesel into the ternary mixture of ethanol-biodiesel-diesel can remarkably enhance micro-explosion. Addition of ethanol up to 20% in e-biodiesel showed no effect on spray penetration. However, increase of nozzle orifice diameter results in increase of spray penetration. The more study on liquid phase penetration and SMD in e-diesel and e-biodiesel is required.

Serological Investigation of Virus Diseases of Tobacco Plant (Nicotiana tabaccum L.) In Korea (혈청학적 방법에 의한 잎담배 바이러스병의 감염상 조사)

  • Park Eun Kyung;La Yong Joon;Heu Il;Lee Yong Deuk
    • Korean journal of applied entomology
    • /
    • v.14 no.2 s.23
    • /
    • pp.59-63
    • /
    • 1975
  • A total of 40 virus infected tobacco plants (Nicotiana tabaccum L.) with various symptom types Were collected from Bucheon and Jeonju area by its symptoms were investigated on the incidence of tobacco mosaic virus (TMV), cucumber mosaic virus (CMV), alfalfa mosaic virus (AMV), potato virus X (PVX) and potato virus Y (PVY) by serological methods. van Slogteren's microprecipitin test was applied for the testing of PVX and PVY from infected plants and Ouchterlony agar double diffusion test was used for CMV, TMV and AMV. Results obtained are as follows: 1. TMV, CMV, AMV, PVX and PVY wcre found to occur on the tobacco plants growing in Korea. 2. The prevalence of each of these viruses among the 40 tobacco plants investigated was in the order of AMV: $(67.5\%)>CMV:(60.0\%)>TMY:(47.5\%)>PVY:(17.5\%)>PVX: (10.0\%).$ 3. In Burley variety, the percentage of infection by TMV was $15\%$, whereas it was as high as $80\%$ in Hicks variety. 4. Among the 40 tobacco plants investigated, $37.5\%$ showed infection with one kind of virus whereas the remaining $62.5\%$, revealed mixed infection with more than two different viruses.

  • PDF

Isolation of Cymbidium mild mosaic virus (Cymbidium mild mosaic virus의 분리동정)

  • Chang M. U.;Doi Y.;Yora K.
    • Korean journal of applied entomology
    • /
    • v.17 no.3 s.36
    • /
    • pp.131-138
    • /
    • 1978
  • A virus named Cymbidium mild mosaic virus(Cy MMV), was mechanically transmitted to Chenopodium amaranticolor from the leaves of Cymbidium with mild mosaic symptoms. The virus was cultured in C. amaranticolor, in which it produced local chlorotic and ring spots, followed by systemic vein clearing with distortion. CyMMV infected 7 out of 35 species of plants. In C. amaranticolor juice infectivity was lost by heating at $90^{\circ}C$ for 10 miuntes, and by aging at$20^{\circ}C$ for 60 days, and by diluting at $10^{-6}$ when bioassayed on C. amaranticolor. CyMMV was not transmitted by Myzus persicae. The virus was purified after clarification of homogenized C. amaranticolor leaf tissues with chloroform, by differential centrifugation followed by sucrose density gradient centrifugation. Electron microscopic examination of purified preparation showed spherical particles of 28nm in diameter. The UV absorption spectrum of purified preparation was typical of u nucleoprotein (max. at 261nm. min. at 243nm), and showed 260/280=1.72 and max/min=1.26. The value of the sedimentation coefficient of the virus was S20.w=126. In gel-diffusion tests, CyMMV antiserum reacted with CarMV, but not with any of four other viruses (BBWV, CRSV, CMV, TBRV) having similar particles and properties in vitro. In ultra-thin sections of CyMMV infected tissues, a large number of virus particles were found in the cytoplasm of mesophyll cells and in xylem vessels.

  • PDF

Explanation of Foaming Mechanism and Experimental Application of Foam Reduction Techniques in the Treated Wastewater Outlet of Wastewater Treatment Plant Connected to a Tidal River, Korea (감조하천에 연결된 하수처리장 방류구의 거품 형성기작 해석 및 거품발생 저감기술의 실험적 현장적용)

  • Shin, Jae-Ki;Cho, Youngsoo;Kim, Youngsung;Kang, Bok-Gyoo;Hwang, Soon-Jin
    • Korean Journal of Ecology and Environment
    • /
    • v.49 no.3
    • /
    • pp.187-196
    • /
    • 2016
  • This study was performed to improve the foaming generated in the effluent of wastewater treatment plant from March 2015 to July 2016. The main cause of foaming was air entrainment by an impinging jet and the internal accumulation by the diffusion barrier. Particularly, the foam growth was most active when there is low tide and larger discharge. To solve this problem, we experimented after installing fine mesh screen and the artificial channel device with underwater discharging outlet in the treated wastewater discharge channel and the outlet, respectively. As a result, the effects of foam reduction by devices ranged 85.0~92.0% and 70.7~85.6%, respectively. In addition, the foam and the noise were easily solved, first of all look to contribute to the prevention of complaints. Our device studies were applied to a single wastewater treatment plant. However, it is considered to be able to apply in other similar cases of domestic sewage treatment plants.

Enzyme Activity of Isolated Psychrotrophic Bacteria from Raw Milk of Different Regions on Season (계절에 따라 여러 지역의 원유에서 분리된 내냉성 미생물의 효소 활성)

  • Shin, Yong Kook;Oh, Nam Su;Lee, Hyun Ah;Nam, Myoung Soo
    • Food Science of Animal Resources
    • /
    • v.33 no.6
    • /
    • pp.772-780
    • /
    • 2013
  • The aim of this study was to investigate the effect of season and location on activities of enzyme produced by psychrotrophic bacteria isolated from raw milk located in Kyunggi region of South Korea. Agar diffusion and colorimetric methods were used for the lipase and protease activities of psychrotrophic bacteria. Intensities of dark blue and transparent ring around colony were compared for activity measurement. Nutrient agar with 1% skim milk added was employed for measuing protease activity. 14 strains of Arthrobacter russicus with lipase activity and 19 strains of Chryserobacterium shigense with protease activities were found to be present. It was found that Acinetobacter genomospecies 10 (match %: 99.90) isolated from B region in fall was the most lipolytic species, whereas Serratia liquefaciens (match %: 99.39) isolated from the same region in spring was the most proteolytic species. Growth curve of Acinetobacte and Serratia liquefaciens was a typical sigmoidal form. Lipase activity increased with incubation time, but its activity began to drop at stationary to motality phase. Optimum condition for incubation time, pH and temperature for extracellular lipase from Acinetobacter genomospecies 10 (match %: 99.90) was 12 h, 8.5, and $45^{\circ}C$, respectively. Extracellular protease from Serratia liquefaciens (match %:99.39) had the same optimum incubation time and pH as extracellular lipase, but optimum temperature was $35^{\circ}C$.

Effects of Vth adjustment ion implantation on Switching Characteristics of MCT(MOS Controlled Thyristor) (문턱전압 조절 이온주입에 따른 MCT (MOS Controlled Thyristor)의 스위칭 특성 연구)

  • Park, Kun-Sik;Cho, Doohyung;Won, Jong-Il;Kwak, Changsub
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.53 no.5
    • /
    • pp.69-76
    • /
    • 2016
  • Current driving capability of MCT (MOS Controlled Thyristor) is determined by turn-off capability of conducting current, that is off-FET performance of MCT. On the other hand, having a good turn-on characteristics, including high peak anode current ($I_{peak}$) and rate of change of current (di/dt), is essential for pulsed power system which is one of major application field of MCTs. To satisfy above two requirements, careful control of on/off-FET performance is required. However, triple diffusion and several oxidation processes change surface doping profile and make it hard to control threshold voltage ($V_{th}$) of on/off-FET. In this paper, we have demonstrated the effect of $V_{th}$ adjustment ion implantation on the performance of MCT. The fabricated MCTs (active area = $0.465mm^2$) show forward voltage drop ($V_F$) of 1.25 V at $100A/cm^2$ and Ipeak of 290 A and di/dt of $5.8kA/{\mu}s$ at $V_A=800V$. While these characteristics are unaltered by $V_{th}$ adjustment ion implantation, the turn-off gate voltage is reduced from -3.5 V to -1.6 V for conducting current of $100A/cm^2$ when the $V_{th}$ adjustment ion implantation is carried out. This demonstrates that the current driving capability is enhanced without degradation of forward conduction and turn-on switching characteristics.

A Study on the Fabrication and Characteristics of ITO Thin Film Deposited by Magnetron Sputtering Method (마그네트론 스퍼터링법을 이용한 Indium-Tin Oxide 박막의 제작과 그 특성에 관한 연구)

  • 조길호;김여중;김성종;문경만;이명훈
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.24 no.6
    • /
    • pp.61-69
    • /
    • 2000
  • Indium-Tin Oxide (ITO) films were prepared on the commercial glass substrate by the Magnetron Sputtering method. The target was a 90wt.% $In_2O_3$-10wt.% $SnO_2$with 99.99% purity. The ITO films deposited by changing the partial pressure of oxygen gas ($O_2$/(Ar+$O_2$)) of 2, 3 and 5% as well as by changing the substrate temperature of $300^{\circ}C$ or $500^{\circ}C$. The influence of substrate pre-annealing and pre-cleaning on the quality of ITO film were examined, in which the substrate temperature was $500^{\circ}C$ and oxygen partial pressure was 3%. The characteristics of films were examined by the 4-point probe, Hall effect measurement system, SEM, AFM, Spectrophotometer, and X-ray diffraction. The optimum ITO films have been obtained when the substrate temperature is $500^{\circ}C$ and oxygen partial pressure is 3%. At optimum condition, the film showed transmittance of 81%, sheet resistivity of $226\Omegatextrm{cm}^2$, resistivity($\rho$) of $5.4\times10^{-3}\Omega$cm, carrier concentration of $1.0\times10^{19}cm^{-3}$, and carrier mobility of $150textrm{cm}^2$Vsec. From XRD spectrum, c(222) plane was dominant in the case of substrate temperature at $300^{\circ}C$, without regarding to oxygen partial pressure. However, in the case of substrate temperature at $500^{\circ}C$, c(400) plane was grown together with c(222) plane, only for oxygen partial pressure of 2 and 3%. In both case of chemical and ultrasonic cleaning without pre-annealing the substrate, it showed much almost same sheet resistivity, resistivity($\rho$), transmittance, carrier concentration, and carrier mobility. In case of $500^{\circ}C$/60min pre-annealing before ITO film deposited, both transimittance and carrier mobility are better than no pre-annealing, because pre-annealing is supposed to remove alkari ions diffusion from substrate. ITO film deposited on the Corning 0080 sybstrate showed a little bit better sheet resistivity, resistivity($\rho$), transimittance, carrier concentration than the film deposited on commercial glass. But no differences between Corning substrate and pre-annealed commercial glass substrate are found.

  • PDF

The properties of algal degradation and gas emission by thermophilic oxic process (고온호기발효장치를 이용한 조류 분해 및 가스 발생특성)

  • Kang, Changmin
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.7 no.2
    • /
    • pp.57-64
    • /
    • 1999
  • The purpose of this study is to establish effective conditions for controlling $CH_4$, $N_2O$ emission from organic Waste / wastewater treatment processes. Continuous and batch experiments were conducted to treat the micro algae from polluted and eutrophicated lakes through the thermophilic oxic process. The microalgae used were mainly Microcystis sp.(collected from eutrophic lake) and Chlorella sp. (cultured in laboratory) Wasted cooking oil was added by aid-heating source. Physico-chemical components of sludges and microalgae were analyzed. In batch experiments, air supply was changed from 50ml/min to 150ml/min. The temperature. water content and drained water were affected by the air flow rate at initial stage. However, there was almost no influence of air flow rate on them in middle and last stages. At air flow rate of 100ml/min, the degradation rate of organic material was higher than that at other air flow rates. $CO_2$ concentration in exhaust was proportional to the strength of aeration, especially at initial stage when degradation was active. $CH_4$ with low concentration was detected only at starting stage when air diffusion was not enough. $N_2O$ production was not affected by variation of air supply. In continuous experiments no matter what the dewatering methods (with PAC and without PAC) and media (wood chip and reed chip) were changed, $N_2O$ was almost not affected by variation of injected air. Result showed that the reed chips using for lake purification could be used as media for thermophilic oxic process in lake and marshes area. $CO_2$ concentration was not so much affected by the change of dewatering methods and media types. $CH_4$ was not detected in the experimental period. So it can be shown that the thermophilic oxic process had been well operated in wide handling conditions regardless of media and dewatering methods.

  • PDF