• Title/Summary/Keyword: IT

Search Result 400,963, Processing Time 0.303 seconds

Construction of Basin Scale Climate Change Scenarios by the Transfer Function and Stochastic Weather Generation Models (전이함수모형과 일기 발생모형을 이용한 유역규모 기후변화시나리오의 작성)

  • Kim, Byung-Sik;Seoh, Byung-Ha;Kim, Nam-Won
    • Journal of Korea Water Resources Association
    • /
    • v.36 no.3 s.134
    • /
    • pp.345-363
    • /
    • 2003
  • From the General Circulation Models(GCMs), it is known that the increases of concentrations of greenhouse gases will have significant implications for climate change in global and regional scales. The GCM has an uncertainty in analyzing the meteorologic processes at individual sites and so the 'downscaling' techniques are used to bridge the spatial and temporal resolution gaps between what, at present, climate modellers can provide and what impact assessors require. This paper describes a method for assessing local climate change impacts using a robust statistical downscaling technique. The method facilitates the rapid development of multiple, low-cost, single-site scenarios of daily surface weather variables under current and future regional climate forcing. The construction of climate change scenarios based on spatial regression(transfer function) downscaling and on the use of a local stochastic weather generator is described. Regression downscaling translates the GCM grid-box predictions with coarse resolution of climate change to site-specific values and the values were then used to perturb the parameters of the stochastic weather generator in order to simulate site-specific daily weather values. In this study, the global climate change scenarios are constructed using the YONU GCM control run and transient experiments.

Estimates of Regional Flood Frequency in Korea (우리나라의 빈도홍수량의 추정)

  • Kim, Nam-Won;Won, Yoo-Seung
    • Journal of Korea Water Resources Association
    • /
    • v.37 no.12
    • /
    • pp.1019-1032
    • /
    • 2004
  • Flood frequency estimate is an essential index for determining the scale of small and middle hydraulic structure. However, this flood quantity could not be estimated directly for practical design purpose due to the lack of available flood data, and indirect method like design rainfall-runoff method have been used for the estimation of design flood. To give the good explain for design flood estimates, regional flood frequency analysis was performed by flood index method in this study. First, annual maximum series were constructed by using the collected data which covers from Japanese imperialism period to 1999. Wakeby distribution recommended by WMO(1989) was used for regional flood frequency analysis and L-moment method by Hosking (1990) was used for parameter estimation. For the homogeneity of region, the discordance and heterogeneity test by Hosking and Wallis(1993) was carried for 4 major watersheds in Korea. Physical independent variable correlated with index flood was watershed area. The relationship between specific discharge and watershed area showed a type of power function, i.e. the specific discharge decreases as watershed area increases. So flood quantity according to watershed area and return period was presented for each watershed(Han rivet, Nakdong river, Geum river and Youngsan/Seomjin river) by using this relation type. This result was also compared with the result of point frequency analysis and its regionalization. It was shown that the dam construction couldn't largely affect the variation of peak flood. The property of this study was also examined by comparison with previous studies.

The Study of the Fitness on Calculation of the Flood Warning Trigger Rainfall Using GIS and GCUH (GIS와 GCUH를 이용한 돌발홍수 기준우량 산정의 타당성 검토 연구)

  • Shin, Hyun-Suk;Kim, Hong-Tae;Park, Moo-Jong
    • Journal of Korea Water Resources Association
    • /
    • v.37 no.5
    • /
    • pp.407-424
    • /
    • 2004
  • Using geomorphoclimatic unit hydrograph(GCUH), we estimated the fitness to calculate the mountainous area discharge and flash flood trigger rainfall(FFTR). First, we compared the GCUH peak discharge with the existing report using the design storm at the Dukcheon basin. Second, we compared the HEC-HMS(Hydrologic Engineering Center-Hydrologic Modeling System) model and GCUH with the observed discharge using the real rainfall events at the Taesu stage gage. Third, GCUH and NRCS(Natural Resources Conservation Service) were used for calculating FFTR and proper calculation method was shown. At the Dukcheon basin, the comparison result of using design storm was shown in Table 11, and it was not in excess of 1.1, except for the 30 year return period. In case of real rainfall events, the result was shown in Table 12, and GCUH discharges were all larger than the HEC-HMS model discharges, and they were very similar to the observed data at the Taesu stage gage. In this study, we found that GCUH was a very proper method in the calculation of mountainous discharge. At the Dukcheon basin, FFTR was 12.96 mm in the first 10 minutes when the threshold discharge was 95.59 $m^3$/sec.

Experimental Study on Flow Characteristics in Meandering Channel (사행수로에서 흐름 특성에 관한 실험적 연구)

  • Seo, Il-Won;Sung, Ki-Hoon;Baek, Kyong-Oh;Jeong, Seong-Jin
    • Journal of Korea Water Resources Association
    • /
    • v.37 no.7
    • /
    • pp.527-540
    • /
    • 2004
  • In order to investigate characteristics of the primary flow and the secondary currents in the meandering channel, laboratory experiments were conducted in the meandering channel made up of alterative bends haying 120。 arc angle. Experiments were performed in two types of cross-sections, a rectangular cross-section and a curved cross-section which was made to adopt a beta probability function. Three-dimensional velocity fields were measured using a micro-ADV. As the result of experiments, in case of the rectangular cross-section, the primary flow occurred taking the shortest course, which is similar to the result of previous researches. In case of the curved cross-section, the primary flow was expected to occur along the thalweg. but it occurred almost along the shortest way. This is considered due to effects of bottom roughness and sinuosity Not only a main cell but also a secondary cell of secondary currents were clearly shown by mean of the stream function. The secondary current intensity has the maximum value near the apex of the second bend for cases of both rectangular and curved cross-sections. However, the value of the secondary current intensity for the curved section is slightly larger than that for the rectangular cross-section. Also, in case of the rectangular cross-section, the higher the ratio of width to depth is, the larger the secondary current intensity is.

Preparation and Characterization of Synthetic Hydroxyapatite/Polyacrylic Acid Homogeneous Composite (합성 Hydroxyapatite/Polyacrylic Acid 균질복합체의 제조 및 특성)

  • Lee, Suk-Kee;Lee, Hyung-Dong;Shin, Hyo-Soon;Lee, Byung-Kyo
    • Journal of the Korean Ceramic Society
    • /
    • v.39 no.11
    • /
    • pp.1097-1102
    • /
    • 2002
  • Hydroxyapatite(HAp) powders were synthesized by wet-precipitation precess using $Ca(NO_3)_2{\cdot}4H_2O$ and $(NH_4)_2HPO_4$ and homogeneous composites of four type were prepared by mixing of synthetic HAp and Polyacrylic Acid(PAA). Ca/P ratio of synthetic HAps was determined using ICP analysis and the thermal property of HAp/PAA composites were investigated by TGA. Good crystalline HAp was obtained at pH 11 and $60{\circ}C$. The ratio of Ca/P in synthetic HAps was quantified in a range of 1.35~1.49, from which Ca-deficient HAp was obtained. The specific surface area of HAp/PAA composite increased with increasing the content of PAA and the weight loss of HAp/PAA composite at $800{\circ}C$ decreased in a range of 3.5~9.6% due to the degradation of PAA binder. From FT-IR analysis of HAp/PAA composite, it was confirmed that the ionic bond between ion of HAp and carboxyl group of PAA was formed.

Effects of Atmosphere during Al Infiltration on Properties of B4C/Al Cermets (B4C/Al 복합체 제조시 함침 분위기가 물성에 미치는 영향)

  • Lim, Kyoung-Ran;Kang, Deog-Il;Kim, Chang-Sam
    • Journal of the Korean Ceramic Society
    • /
    • v.39 no.11
    • /
    • pp.1069-1073
    • /
    • 2002
  • Properties of $B_4C/Al$ cermets were studied as a function of atmosphere during infiltration and post-heat treatment. The cermet A(infiltrated at $1100{\circ}C$/10 min under vacuum) had 19.4 wt% of Al but the cermet B(infiltratd at $1080{\circ}C$/10 min under a flowing argon) showed 14.4 wt% of Al. It indicated that the reaction between $B_4C$ and Al underwent slower under vacuum than under a flowing argon. The cermet B as infiltrated showed the density of 2.65 $g/cm^3$, the MOR of 503 MPa and the Young's Modulus of 237 GPa, but the post-heat treatment at $900{\circ}C$ for 8h under a flowing Ar gave rise to the cermet with the density of 2.65 $g/cm^3$, the MOR of 296 MPa, the Young's Modulus of 300 GPa. The cermet B showed better properties than the cermet A. Changes in compositions of the cermets by the post-heat treatment were observed qualitatively by XRD and SEM, the amount of Al was determined by analysis of its DSC curve.

Fabrication of Honeycomb Adsorbents by Using the Ceramic Paper and Adsorption Characteristics of VOC (세라믹섬유지를 사용한 허니컴 흡착소자 제조 및 VOC 흡착특성)

  • Yoo, Yoon-Jong;Cho, Churl-Hee;Kim, Hong-Soo;Ahn, Young-Soo;Han, Moon-Hee;Jang, Gun-Eik
    • Journal of the Korean Ceramic Society
    • /
    • v.39 no.11
    • /
    • pp.1035-1041
    • /
    • 2002
  • The adhesion characteristics of adsorbent during impregnation of Y-type and ZSM-5type zeolites into ceramic paper were analyzed, as the amount of silica sol in slurry for impregnation was varied. 31 wt% of zeolite particle, which is useful for VOC adsorption, was evenly dispersed and adhered on ceramic paper and original crystal structure of the zeolite remained unchanged even after binder application and heat treatment. Surface area of the impregnated ceramic paper was decreased compared with that of zeolite powder. And it was found to be attributed to the reduction of volume of mesopore while the volume of micropore under $20{\AA}$ was unchanged. Zeolite-impregnated honeycomb cylinder, whose diameter and length were 10 cm and 40 cm, respectively, was subjected to adsorption/desorption test with respect to toluene, MEK, cyclohexanone. All of the VOC's were removed by adsorption with efficiency higher than 97% and from the static adsorption test, $42 Nm^3/h$ of 300 ppmv-VOC-laden air was calculated be treated continuously, when the honeycomb was used in an adsorptive rotor system.

Study on the Sinterability and Pellet Properties of Dy2O3-TiO2 Oxides (Dy2O3-TiO2 산화물의 소결성 및 소결체 특성에 관한 연구)

  • Kim, Han-Soo;Joung, Chang-Yong;Kim, Si-Hyung;Lee, Byoung-Ho;Lee, Young-Woo;Sohn, Dong-Seong;Lee, Sang-Hyun
    • Journal of the Korean Ceramic Society
    • /
    • v.39 no.11
    • /
    • pp.1108-1112
    • /
    • 2002
  • pellets were fabricated as a reactor control material by the powder process. Sinterability of $Dy_2O_3+TiO_2$ mixtures and phases of solid solutions were analyzed by using TMA and XRD, respectively. The thermal conductivity of pellet was determined from the measurement data of the specific heat and the thermal diffusivity of the pellet. The sinterability and the sintered density varied as a function of Dy content in $Dy_xTi_yO_z$. The pellet of $3\;g\;Dy/cm^3\;Dy_xTi_yO_z$ melted in the sintering temperature of $1580{\circ}C$. There were two phases of $Dy_2TiO_5+Dy_2Ti_2O_7$ and a single phase of $Dy_2TiO_5$ for the pellet that has the Dy content of and , respectively. The thermal conductivity of $Dy_xTi_yO_z$ was nearly constant in the temperature range of $25~600{\circ}$. It was 1.69~1.78 W/mK for the pellet sintered in and 1.49~1.55 W/mK for the pellet sintered in $1550{\circ}$.

The Effect of Trivalent Cation Doping on the Low Temperature Phase Stability of 2Y-TZP (3가 양이온 산화물이 첨가된 2Y-TZP의 저온 상안정성)

  • Jang, Ju-Woong;Kim, Hak-Kwan;Lee, Deuk-Yong;Kim, Dae-Joon;Park, Sun-Min
    • Journal of the Korean Ceramic Society
    • /
    • v.39 no.11
    • /
    • pp.1055-1062
    • /
    • 2002
  • The phase stability and the Low Temperature Degradation(LTD) mechanism of Tetragonal Zirconia Polycrystals(TZP), sintered specimens of $Y_2O_3$-Stabilized Zirconia(2Y-TZP), doped with trivalent cations, were evaluated by investigating meachnical properties, Raman spectra, lattice parameter variation and the oxygen vacancy behavior under applied electric field. XRD observation was put forward on 2Y-TZP doped with trivalent cation whose ionic radii were larger than $Zr^{4+}(Sc^{3+},\;Yb^{3+},\;Y^{3+},\;Sm^{3+},\;Nd^{3+},\;La^{3+})$ up to 2 mol% and sintered at 1500 h for 1h. For $La^{3+}$ doping, the stability of tetragonal phase was degraded due to the formation of the pyrochlore phase $(La_2Zr_2O_7)$ as the dopant content increased above exceeded 0.5 mol%. As the dosage increased, tetragonal phase maintained for the case of $Sc^{3+}$, whose radius was similar to $Zr^{4+}$, on the other hand, the cubic phase was formed for the cases of $Yb^{3+},\;Y^{3+},\;Sm^{3+},\;Nd^{3+}$. As the radii of dopant cation increased, c/a ratio increased and it was experimentally observed that the amount of monoclinic phase decreased when the specimens were annealed at $220{\circ}C$ for 500 h.

Preparation of PMN-PT-BT/Ag/MgO Nanocomposite and Dielectric Properties (PMN-PT-BT/Ag/MgO 나노복합체의 제조 및 유전 특성)

  • Jeong, Soon-Yong;Lim, Kyoung-Ran;Nahm, Sahn
    • Journal of the Korean Ceramic Society
    • /
    • v.39 no.11
    • /
    • pp.1074-1082
    • /
    • 2002
  • Nanocomposite PMN-PT-BT/Ag/MgO was prepared by sintering at $950{\circ}C$ with addition of $AgNO_3$ and MgO sol to the PMN-PT-BT powder sinterable at $1200{\circ}C$. The low-temperature-sinterable PMN-PT-BT/Ag powder prepared by the modified mixed oxide method was calcined at $600{\circ}C$ for 1h and surface modified with the MgO sol of 0-10 wt% and then subjected to consolidation at $850-950{\circ}C$ for 4h under a flowing oxygen. The nanocomposite PMN-PT-BT/Ag/MgO(0.5wt%) sintered at $950{\circ}C$ showed the microstructure with grains of $1-3{\mu}m$, the second phase of MgO of $0.1-0.3{\mu}m$ by SEM and Ag of << $1{\mu}m$ qualitatively by SIMS. It showed the sintered relative density of 99%, the room temperature dielectric constant of 17200, the dielectric loss of 2.1% and the specific resistivity of $5.46{\times}10^{12}{\Omega}{\cdot}cm$. But the PMN-PT-BT/Ag/MgO(0 wt%) nanocomposite sintered at $950{\circ}C$ showed a little better properties : the sintered relative density of 99.5%, the room temperature dielectric constant of 19500, the dielectric loss of 2.1% and the specific resistivity of $7.30{\times}10^{12}{\Omega}{\cdot}cm$.