• Title/Summary/Keyword: ISM: $H_2$

Search Result 90, Processing Time 0.019 seconds

Observations of the CH3OH 42-51 E Line Toward the Sgr B2 Region

  • Minh, Young-Chol;Kim, Sang-Joon
    • Journal of Astronomy and Space Sciences
    • /
    • v.28 no.1
    • /
    • pp.13-16
    • /
    • 2011
  • The $CH_3OH$ $4_2-5_1$ E transition was observed toward the Sgr B2 region, including the Principal Cloud and its surroundings. This methanol transition shows an extended emission along the 2'N cloud, which is believed to be colliding with the Principal Cloud and may trigger the massive star formation in this cloud. This extended methanol emission may also suggest that the 2'N cloud is under shocks. We derive total methanol column density $N(CH_3OH)\;=\;2.9{\pm}0.3{\times}10^{14}\;cm^{-2}$ toward the peak position of the extended emission. The fractional abundance of methanol is about 10.9, relative to the estimated total $H_2$ abundance, which is similar to the methanol abundances in quiet gas phase.

OBSERVATIONS OF $HC_3N$ TOWARD THE SGR B2 MOLECULAR CLOUD

  • MINH Y. C.;KIM HYUN-GOO
    • Journal of The Korean Astronomical Society
    • /
    • v.31 no.2
    • /
    • pp.117-125
    • /
    • 1998
  • We have observed the 10-9 transitions of $HC_3N$ and its $^{13}C$ substitutes ($H^{13}CCCN,\;HC^{13}CCN$, and $HCC^{13}CN$), and the vibration ally excited 12-11 ($v_r=1$) $HC_3N$ transition toward the Sgr B2 molecular cloud. The observed $HC_3N$ emission shows an elongated shape around the Principal Cloud ($\~$4.5 pc in R.A. $\times$ 7.4 pc in Decl.). The optically thin $H^{13}CCCN$ line peaks around the (N) core and we derive the total column density $N(H^{13}CCCN) = 4 {\times}10^{13} cm^{-2}$ at this position. Toward the 2' N cloud which shows the peculiar chemistry, the $HC_3N$ lines show enhancements compared to the extended envelope. The shocks of the 2' N may have resulted in the enhancement of $HC_3N$. The hot component of $HC_3N$ is strongly concentrated around the (N) core and its HPW is $\~$0.9 pc in diameter. We derive the lower limit of the abundance ratio $N(HC_3N)/N(H^{13}CCCN)$ to be larger than 40 in most regions except the (M) and (N) cores. The fractionation processes of $^{13}C $at this region may not be as effective as previously reported.

  • PDF

HCN(1-0) OBSERVATIONS OF STARLESS CORES

  • SOHN J,;LEE C, W,;LEE H, M.;PARK Y.-S.;MYERS P. C.;LEE Y.;TAFALLA M.
    • Journal of The Korean Astronomical Society
    • /
    • v.37 no.4
    • /
    • pp.261-263
    • /
    • 2004
  • We present a progress report on HCN(1-0) line observations toward starless cores to probe inward motions. We have made a single pointing survey toward the central regions of 85 starless cores and performed mapping observations of 6 infall candidate starless cores. The distributions of the velocity difference between HCN(1-0) hyperfine lines and the optically thin tracer $N_2H^+$(1-0) are significantly skewed to the blue, meaning that HCN(1-0) frequently detects inward motions. Their skewness to the blue is even greater than that of CS(2-1) Lee et al., possibly implying more infall occurrence than CS(1-0). We identify 19 infall candidates by using several characteristics illustrating spectral infall asymmetry seen in HCN(1-0) hyperfine lines, CS(3-2), CS(2-1), $DCO^+(2-1)$ and $N_2H^+$ observations. The HCN(1-0) F(O-l) with the least optical depth usually shows a similar intensity distribution to that of $N_2H^+$ which closely traces the density distribution of the cores, indicating that HCN(1-0) is less chemically affected and so believed to reflect kinematics occurring in rather inner regions of the cores. Detailed radiative transfer model fits of the spectra are underway to analyze central infall kinematics in starless cores.

Design of Antenna for Intelligent Detection Sensor (지능형 주차검지센서용 안테나 개발)

  • Choi, Yoon-Seon;Hong, Ji-Hun;Woo, Jong-Myung
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.19 no.2
    • /
    • pp.104-109
    • /
    • 2020
  • In this paper, we proposed a miniaturized folded inverted F antenna with ISM-band (center frequency : 447 MHz) for mounting in intelligent parking sensor. First, to mount the antenna in the intelligent parking sensor module (72 mm × 70 mm) with limited size, a folded inverted F antenna was designed at low frequency 447 MHz (wavelength λ : 670 mm) of the ISM-band. As a result, it resonates in the ISM band and obtains suitable characteristic with a -10 dB bandwidth of 13 MHz (2.9%). In addition, the H-plane pattern by the vertical and horizontal elements represents the omni-directional patterns from which the null point is removed, and the E-plane has directivity in a specific direction. Finally, it is suitable as and antenna for vehicle management in parking lots.

Design of Implantable CPW Fed Monopole Antenna for ISM Band Applications

  • Kumar, S. Ashok;Shanmuganantham, T.
    • Transactions on Electrical and Electronic Materials
    • /
    • v.15 no.2
    • /
    • pp.55-59
    • /
    • 2014
  • An implantable CPW fed monopole antenna embedded into human tissue is proposed for ISM band biomedical applications. The proposed antenna is made compatible for implantation by embedding it in an alumina ceramic substrate (${\Box}_r=9.8$ and thickness=0.65 mm). The proposed antenna covers the ISM band of 2.45 GHz. The radiation parameters, such as return loss, E-Plane, H-Plane, are measured and analyzed, using the method of moments. The proposed antenna has substantial merits over other implanted antennas, like low profile, miniaturization, lower return loss, and better impedance matching and high gain.

PROPERTIES OF THE MOLECULAR CLUMP AND THE ASSOCIATED ULTRACOMPACT H II REGION IN THE GAS SHELL OF THE EXPANDING H II REGION SH 2-104

  • Minh, Young Chol;Kim, Kee-Tae;Yan, Chi-Hung;Park, Yong-Sun;Lee, Seokho;Lal, Dharam Vil;Hasegawa, Tatsuhiko;Zhang, X.Z.;Kuan, Yi-Jeng
    • Journal of The Korean Astronomical Society
    • /
    • v.47 no.5
    • /
    • pp.179-185
    • /
    • 2014
  • We study the physical and chemical properties of the molecular clump hosting a young stellar cluster, IRAS 20160+3636, which is believed to have formed via the "collect and collapse" process. Physical parameters of the UC H II region associated with the embedded cluster are measured from the radio continuum observations. This source is found to be a typical Galactic UC H II region, with a B0.5 type exciting star, if it is ionized by a single star. We derive a CN/HCN abundance ratio larger than 1 over this region, which may suggest that this clump is being affected by the UV radiation from the H II region.

Propagation of the ionizing radiations leaked out of bright H II regions into the diffuse interstellar medium

  • Seon, Kwang-Il
    • Bulletin of the Korean Space Science Society
    • /
    • 2009.10a
    • /
    • pp.33.2-33.2
    • /
    • 2009
  • Diffuse ionized gas (DIG or warm ionized medium, WIM) outside traditional regions is a major component of the interstellar medium (ISM) not only in our Galaxy, but also in other galaxies. It is generally believed that major fraction of the Halpha emission in the DIG is provided by OB stars. In the "standard" photoionization models, the Lyman continuum photons escaping from bright H II regions is the dominant source responsible for ionizing the DIG. Then, a complex density structure must provide the low-density paths that allow the photons to traverse kiloparsec scales and ionize the gas far from the OB stars not only at large heights above the midplane, but also within a galactic plane. Here, I present Monte-Carlo models to examine the propagation of the ionizing radiation leaked out of traditional H II regions into the diffuse ISM applied to two face-on spirals M 51 and NGC 7424. We find that the "standard" scenario requires absorption too unrealistically small to be believed, but the obtained scale-height of the galactic disk is consistent with those of edge-on galaxies. We also report that the probability density functions of the Halpha intensities of the DIG and H II regions in the galaxies are log-normal, indicating the turbulence property of the ISM.

  • PDF

A SPECTRAL LINE SURVEY OF THE ULTRACOMPACT H II REGION G34.3+0.15. II: 155.3-165.3 GHZ

  • KIM HUN-DAE;CHO SE-HYUNG;LEE CHANG-WON;BURTON MICHAEL G.
    • Journal of The Korean Astronomical Society
    • /
    • v.34 no.3
    • /
    • pp.167-179
    • /
    • 2001
  • A molecular line survey towards the UC H II region G34.3+0.15 from 155.3 to 165.3GHz has been conducted with the TRAO 14-m radio telescope. Combined with our previous observations from 84.7 to 115.6GHz and 123.5 to 155.3GHz (Paper I), the spectral coverage of this survey in G34.3+0.15 now runs from 85 to 165 GHz. From these latest observations, a total of 18 lines from 6 species were detected. These include four new lines corresponding to ${\Delta}$J = 0, ${\Delta}$K = 1 transitions of the $CH_3OH$ E-type species, and two new lines corresponding to transitions from $SO_2$ and $HC_3N$. These 6 new lines are $CH_3OH$[1(1) - 1(0)E], $CH_3OH$[2(1) - 2(0)E], $CH_3OH$[3(1) - 3(0)E], $CH_3OH$[4(1) - 4(0)E], $SO_2$[14(1, 13) -14(0, 14)] and $HC_3N$[18 -17]. We applied a rotation diagram analysis to derive rotation temperatures and column densities from the methanol transitions detected, and combined with NRAO 12-m data from Slysh et al. 1999. Applying a two-component fit, we find a cold component with temperature 13-16K and column density $3.3-3.4 {\times} 10^{14} cm^{-2}$, and a hot component with temperature 64 - 83K and column density $9.3{\times}10^{14} - 9.7 {\times} 10^{14} cm^{-2}$. On the other hand, applying just a one-component fit yields temperatures in the 47 -62 K range and column densities from $7.5-1.1 {\times} 10^{15} cm^{-2}$.

  • PDF

SiO IN THE SGR B2 REGION

  • Minh, Y.C.
    • Journal of The Korean Astronomical Society
    • /
    • v.40 no.3
    • /
    • pp.61-65
    • /
    • 2007
  • The 2-1 and 5-4 transitions of SiO have been observed toward the Sgr B2 region, including the Principal Cloud(the GMC containing Sgr B2(M)) and its surroundings. The morphology and velocity structure of the SiO emission show a close resemblance with the HNCO Ring feature, identified by Minh & Irvine(2006), of about 10 pc in diameter, which may be expanding and colliding with the Principal Cloud. Three SiO clumps have been found around the Ring, with total column densities $N_{SiO}{\sim}1{\times}10^{14}cm^{-2}$ at the peak positions of these clumps. The fractional SiO abundance relative to $H_2$ has been estimated to be ${\sim}(0.5-1){\times}10^{-9}$, which is about two orders of magnitude larger than the quiet dense cloud values. Our SiO observational result supports the existence of an expanding ring, which may be triggering active star formations in the Principal Cloud.

THE FRACTAL DIMENSION OF THE 𝜌 OPHIUCUS MOLECULAR CLOUD COMPLEX

  • Lee, Yongung;Li, Di;Kim, Y.S.;Jung, J.H.;Kang, H.W.;Lee, C.H.;Yim, I.S.;Kim, H.G.
    • Journal of The Korean Astronomical Society
    • /
    • v.49 no.6
    • /
    • pp.255-259
    • /
    • 2016
  • We estimate the fractal dimension of the ${\rho}$ Ophiuchus Molecular Cloud Complex, associated with star forming regions. We selected a cube (${\upsilon}$, l, b) database, obtained with J = 1-0 transition lines of $^{12}CO$ and $^{13}CO$ at a resolution of 22" using a multibeam receiver system on the 14-m telescope of the Five College Radio Astronomy Observatory. Using a code developed within IRAF, we identified slice-clouds with two threshold temperatures to estimate the fractal dimension. With threshold temperatures of 2.25 K ($3{\sigma}$) and 3.75 K ($5{\sigma}$), the fractal dimension of the target cloud is estimated to be D = 1.52-1.54, where $P{\propto}A^{D/2}$, which is larger than previous results. We suggest that the sampling rate (spatial resolution) of observed data must be an important parameter when estimating the fractal dimension, and that narrower or wider dispersion around an arbitrary fit line and the intercepts at NP = 100 should be checked whether they relate to firms noise level or characteristic structure of the target cloud. This issue could be investigated by analysing several high resolution databases with different quality (low or moderate sensitivity).