• Title/Summary/Keyword: IS(Iodine-Sulfur) process

Search Result 41, Processing Time 0.027 seconds

The Effect of SO2-O2 Mixture Gas on Phase Separation Composition of Bunsen Reaction with HIx solution (HIx 용액을 이용한 분젠 반응에서 상 분리 조성에 미치는 SO2-O2 혼합물 기체의 영향)

  • Han, Sangjin;Kim, Hyosub;Ahn, Byungtae;Kim, Youngho;Park, Chusik;Bae, Kikwang;Lee, Jonggyu
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.23 no.5
    • /
    • pp.421-428
    • /
    • 2012
  • The Sulfur-Iodine (SI) thermochemical hydrogen production process is one of the most promising thermochemical water splitting technologies. In the integrated operation of the SI process, the $O_2$ produced from a $H_2SO_4$ decomposition section could be supplied directly to the Bunsen reaction section without preliminary separation. A $HI_x$ ($I_2+HI+H_2O$) solution could be also provided as the reactants in a Bunsen reaction section, since the sole separation of $I_2$ in a $HI_x$ solution recycled from a HI decomposition section was very difficult. Therefore, the Bunsen reaction using $SO_2-O_2$ mixture gases in the presence of the $HI_x$ solution was carried out to identify the effect of $O_2$. The amount of $I_2$ unreacted under the feed of $SO_2-O_2$ mixture gases was little higher than that under the feed of $SO_2$ gas only, and the amount of HI produced was relatively decreased. The $O_2$ in $SO_2-O_2$ mixture gases also played a role to decrease the amount of a impurity in $HI_x$ phase by only striping effect, while that in $H_2SO_4$ phase was hardly affected.

Corrosion of Selected Materials in Boiling Sulfuric Acid for the Nuclear Power Industries

  • Kim, Dong-Jin;Lee, Han Hee;Kwon, Hyuk Chul;Kim, Hong Pyo;Hwang, Seong Sik
    • Corrosion Science and Technology
    • /
    • v.6 no.2
    • /
    • pp.37-43
    • /
    • 2007
  • Iodine sulfur (IS) process is one of the promising processes for a hydrogen production by using a high temperature heat generated by a very high temperature gas cooled reactor(VHTR) in the nuclear power industries. Even though the IS process is very efficient for a hydrogen production and it is not accompanied by a carbon dioxide evolution, the highly corrosive environment of the process limits its application in the industry. Corrosion tests of selected materials were performed in sulfuric acid to select appropriate materials compatible with the IS process. The materials used in this work were Fe-Cr alloys, Fe-Ni-Cr alloys, Fe-Si alloys, Ni base alloys, Ta, Ti, Zr, SiC, Fe-Si, etc. The test environments were 50 wt% sulfuric acid at $120^{\circ}C$ and 98 wt% at $320^{\circ}C$. Corrosion rates were measured by using a weight change after an immersion. The surface morphologies and cross sectional areas of the corroded materials were examined by using SEM equipped with EDS. Corrosion behaviors of the materials were discussed in terms of the chemical composition of the materials, a weight loss, the corrosion morphology, the precipitates in the microstructure and the surface layer composition.

H2-MHR PRE-CONCEPTUAL DESIGN SUMMARY FOR HYDROGEN PRODUCTION

  • Richards, Matt;Shenoy, Arkal
    • Nuclear Engineering and Technology
    • /
    • v.39 no.1
    • /
    • pp.1-8
    • /
    • 2007
  • Hydrogen and electricity are expected to dominate the world energy system in the long term. The world currently consumes about 50 million metric tons of hydrogen per year, with the bulk of it being consumed by the chemical and refining industries. The demand for hydrogen is expected to increase, especially if the U.S. and other countries shift their energy usage towards a hydrogen economy, with hydrogen consumed as an energy commodity by the transportation, residential and commercial sectors. However, there is strong motivation to not use fossil fuels in the future as a feedstock for hydrogen production, because the greenhouse gas carbon dioxide is a byproduct and fossil fuel prices are expected to increase significantly. An advanced reactor technology receiving considerable international interest for both electricity and hydrogen production, is the modular helium reactor (MHR), which is a passively safe concept that has evolved from earlier high-temperature gas-cooled reactor (HTGR) designs. For hydrogen production, this concept is referred to as the H2-MHR. Two different hydrogen production technologies are being investigated for the H2-MHR; an advanced sulfur-iodine (SI) thermochemical water splitting process and high-temperature electrolysis (HTE). This paper describes pre-conceptual design descriptions and economic evaluations of full-scale, nth-of-a-kind SI-Based and HTE-Based H2-MHR plants. Hydrogen production costs for both types of plants are estimated to be approximately $2 per kilogram.

SAFETY STUDIES ON HYDROGEN PRODUCTION SYSTEM WITH A HIGH TEMPERATURE GAS-COOLED REACTOR

  • TAKEDA TETSUAKI
    • Nuclear Engineering and Technology
    • /
    • v.37 no.6
    • /
    • pp.537-556
    • /
    • 2005
  • A primary-pipe rupture accident is one of the design-basis accidents of a High-Temperature Gas-cooled Reactor (HTGR). When the primary-pipe rupture accident occurs, air is expected to enter the reactor core from the breach and oxidize in-core graphite structures. This paper describes an experiment and analysis of the air ingress phenomena and the method fur the prevention of air ingress into the reactor during the primary-pipe rupture accident. The numerical results are in good agreement with the experimental ones regarding the density of the gas mixture, the concentration of each gas species produced by the graphite oxidation reaction and the onset time of the natural circulation of air. A hydrogen production system connected to the High-Temperature Engineering Test Reactor (HTTR) Is being designed to be able to produce hydrogen by themo-chemical iodine-Sulfur process, using a nuclear heat of 10 MW supplied by the HTTR. The HTTR hydrogen production system is first connected to a nuclear reactor in the world; hence a permeation test of hydrogen isotopes through heat exchanger is carried out to obtain detailed data for safety review and development of analytical codes. This paper also describes an overview of the hydrogen permeation test and permeability of hydrogen and deuterium of Hastelloy XR.

HI concentration by EED for the HI decomposition in IS process (IS 프로세스의 HI 분해반응공정을 위한 전해 - 전기투석(EED) HI 농축)

  • Hong, Seong-Dae;Kim, Jeong-Geun;Lee, Sang-Ho;Choi, Sang-Il;Bae, Ki-Kwang;Hwang, Gab-Jin
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.17 no.2
    • /
    • pp.212-217
    • /
    • 2006
  • An experimental study on Electro-electrodialysis (EED) for IS (Iodine-Sulfur) process which is well known as hydrogen production system was carried out for the HI concentration from HIx (HI: $H_2O$ : $I_2$ = 1 : 5 : 1) solution. The polymer electrolyte membrane and the activated carbon cloth were adopted as a cation exchange membrane and electrode, respectively. In order to evaluate the temperature effect about HI concentration in fixed molar ratio, three case of temperature were selected to $60^{\circ}C$, $90^{\circ}C$ and $120^{\circ}C$. The electro-osmosis coefficient and transport number of proton have been changed from 1.95 to 1.21 (mol/Faraday) and 0.91 to 0.76, respectively as temperature increase from $60^{\circ}C$ to $120^{\circ}C$. It can be realized that the HI mole fraction in final stage of EED experiments already over the quasi-azeotrope composition.

Bench-scale Test of Sulfuric Acid Decomposition Process in SI Thermochemical Cycle at Ambient Pressure (SI 열화학싸이클 황산분해공정의 Bench-scale 상압 실험)

  • Jeon, Dong-Keun;Lee, Ki-Yong;Kim, Hong-Gon;Kim, Chang-Soo
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.22 no.2
    • /
    • pp.139-151
    • /
    • 2011
  • The sulfur-iodine (SI) thermochemical water splitting cycle is one of promising hydrogen production methods from water using high-temperature heat generated from a high temperature gas-cooled nuclear reactor (HTGR). The SI cycle consists of three main units, such as Bunsen reaction, HI decomposition, and $H_2SO_4$ decomposition. The feasibility of continuous operation of a series of subunits for $H_2SO_4$ decomposition was investigated with a bench-scale facility working at ambient pressure. It showed stable and reproducible $H_2SO_4$ decomposition by steadily producing $SO_2$ and $O_2$ corresponding to a capacity of 1 mol/h $H_2$ for 24 hrs.

[ $SO_2/O_2$ ] Separation with [DMIm]$MeSO_4$ in IS Cycle (IS cycle에서의 [DMIm]$MeSO_4$를 이용한 $SO_2/O_2$ 분리)

  • Lee, Ki-Yong;Song, Kwang-Ho;Yoo, Kye-Sang;Kim, Hong-Gon;Jeong, Kwang-Deog;Kim, Chang-Soo
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.19 no.1
    • /
    • pp.49-55
    • /
    • 2008
  • The feasibility of ionic liquid as a novel absorbent of $SO_2$ for the separation of $SO_2$ from $SO_2/O_2$ mixture in the thermochemical IS(Iodine-Sulfur) cycle was investigated. 1,3-dimethylimidazolium methylsulfate ([DMIm]$MeSO_4$) had shown twenty five times higher solubility of $SO_2$ than that of $O_2$. The dependence of $SO_2$ solubility by [DMIm]$MeSO_4$ on temperature and $SO_2$ partial pressure was examined, which confirmed the possibility of temperature and pressure swing for the separation process. Through cyclic absorption and desorption with temperature swing the stability of [DMIm]$MeSO_4$ in the separation process was also demonstrated. As a result of the experiments carried out, $SO_2$ separation from $SO_2/O_2$ mixture with ionic liquid([DMIm]$MeSO_4$) can be applied to the thermochemical IS cycle.

Current Status of Hot Steam Corrosion Evaluation of the Candidate Materials for Intermediate Heat Exchangers of HTSE System (고온전기분해시스템의 열교환기 후보재료에 대한 고온증기 환경에서의 부식평가 현황)

  • Kim, Minu;Kim, Dong Hoon;Jang, Changheui;Yoon, Duk-Joo
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.5 no.1
    • /
    • pp.1-8
    • /
    • 2009
  • Nuclear hydrogen production using high temperature heat of a very high temperature reactor(VHTR) is one of the most attractive ways of mass hydrogen production without greenhouse gas emission. In many countries, sulfur-iodine(S-I) thermochemical process and high temperature steam electrolysis(HTSE) process are being investigated. In such processes, corrosion behavior of Intermediate heat exchanger materials are the most critical issues. Especially in a HTSE system, several heat exchangers will be facing hot steam conditions. In this paper, the status of high temperature corrosion researches in hot steam and supercritical water conditions are reviewed in view of the implication to HTSE conditions. Based on the review, test condition and plan of the hot steam corrosion of the candidate materials are formulated and described in some details along with the schematics of the test set-up. The test results and subsequent evaluation will be used in development of a interface system between the HTSE hydrogen production system and the VHTR.

  • PDF

Characteristics of Hydrogen Iodide Decomposition using Alumina-Supported Ni Based Catalyst (Ni 기반 촉매를 이용한 HI 분해 반응 특성)

  • KIM, JI HYE;PARK, CHU SIK;KIM, CHANG HEE;KANG, KYOUNG SOO;JEONG, SEONG UK;CHO, WON CHUL;KIM, YOUNG HO;BAE, KI KWANG
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.26 no.6
    • /
    • pp.507-515
    • /
    • 2015
  • HI decomposition reaction requires a catalyst for the efficient production of hydrogen as a key reaction for hydrogen production in sulfur-iodine thermochemical water-splitting (SI) cycle. As a catalyst used in the reaction, the performance of platinum catalyst is excellent. While, the platinum catalyst is not economical. Therefore, studies of a nickel catalyst that could replace platinum have been carried out. In this study, the characteristics of the catalytic HI decomposition on the amount of loaded nickel (Ni = 0.1, 0.5, 1, 3, 5, 10 wt%) were investigated. As the supported Ni amount increased up to 3 wt%, HI decomposition was found to increase in linear proportion. However, the conversion of $Ni/Al_2O_3$ catalyst loaded above 3 wt% was not linear. It was thought that the different HI decomposition characteristics was caused in the size and metal dispersion of Ni particles of catalyst. The physical property of catalyst before and after HI decomposition reaction was characterized by BET, chemisorption, XRD and SEM analysis.

High-Temperature Structural-Analysis Model of Process Heat Exchanger for Helium Gas Loop (I) (헬륨가스루프 시험용 공정열교환기에 대한 고온구조해석 모델링 (I))

  • Song, Kee-Nam;Lee, Heong-Yeon;Kim, Yong-Wan;Hong, Seong-Duk;Park, Hong-Yoon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.9
    • /
    • pp.1241-1248
    • /
    • 2010
  • In large-scale production of hydrogen, a PHE (Process Heat Exchanger) is a key component because the heat required to carry out the Sulfur-Iodine chemical reaction that yields hydrogen is transferred from a VHTR (Very High Temperature Reactor) by the PHE. Korea Atomic Energy Research Institute established a helium gas loop for conducting performance test of components that are used in the VHTR. In this study, as a part of high-temperature structural-integrity evaluation of a designed PHE prototype that is scheduled to be tested in the helium gas loop, we carried out high-temperature structural-analysis modeling, thermal analysis, and thermal-expansion analysis for the designed PHE prototype. An appropriate constraint condition is proposed at the end of the in-flow and out-flow pipelines of the primary and secondary coolants and the proposed constraint condition will be applied to the design of the performance-test loop setup for the designed PHE prototype.