DOI QR코드

DOI QR Code

The Effect of SO2-O2 Mixture Gas on Phase Separation Composition of Bunsen Reaction with HIx solution

HIx 용액을 이용한 분젠 반응에서 상 분리 조성에 미치는 SO2-O2 혼합물 기체의 영향

  • Han, Sangjin (Department of Fine Chemical Engineering and Applied Chemistry, Chungnam National University) ;
  • Kim, Hyosub (Department of Fine Chemical Engineering and Applied Chemistry, Chungnam National University) ;
  • Ahn, Byungtae (Department of Fine Chemical Engineering and Applied Chemistry, Chungnam National University) ;
  • Kim, Youngho (Department of Fine Chemical Engineering and Applied Chemistry, Chungnam National University) ;
  • Park, Chusik (Hydrogen Energy Research Group, Korea Institute of Energy Research) ;
  • Bae, Kikwang (Hydrogen Energy Research Group, Korea Institute of Energy Research) ;
  • Lee, Jonggyu (Energy & Resources Research Department, Research Institute of Industrial Science & Technology)
  • Received : 2012.09.27
  • Accepted : 2012.10.26
  • Published : 2012.10.31

Abstract

The Sulfur-Iodine (SI) thermochemical hydrogen production process is one of the most promising thermochemical water splitting technologies. In the integrated operation of the SI process, the $O_2$ produced from a $H_2SO_4$ decomposition section could be supplied directly to the Bunsen reaction section without preliminary separation. A $HI_x$ ($I_2+HI+H_2O$) solution could be also provided as the reactants in a Bunsen reaction section, since the sole separation of $I_2$ in a $HI_x$ solution recycled from a HI decomposition section was very difficult. Therefore, the Bunsen reaction using $SO_2-O_2$ mixture gases in the presence of the $HI_x$ solution was carried out to identify the effect of $O_2$. The amount of $I_2$ unreacted under the feed of $SO_2-O_2$ mixture gases was little higher than that under the feed of $SO_2$ gas only, and the amount of HI produced was relatively decreased. The $O_2$ in $SO_2-O_2$ mixture gases also played a role to decrease the amount of a impurity in $HI_x$ phase by only striping effect, while that in $H_2SO_4$ phase was hardly affected.

Keywords

References

  1. J. E. Funk, "Thermochemical hydrogen production: past and present", Int. J. Hydrogen Energy, Vol. 26, No. 3, 2001, p. 185. https://doi.org/10.1016/S0360-3199(00)00062-8
  2. J. E. Funk, and R. M. Reinstrom, "Energy Requirements in the Production of Hydrogen from Water", Ind. Eng. Chem. Proc. Des. Develop., Vol. 5, No. 3, 1966, p. 336.
  3. S. Kubo, H. Kasahara, H. Okuda, A. Terada, N. Tanaka, Y. Inaba, H. Ohashi, Y. Inagaki, K. Onuki, and R. Hino, "A pilot test plan of the thermochemical water-splitting iodine-sulfur process", Nucl. Eng. Des., Vol. 233, No. 1-3, 2004, p. 355. https://doi.org/10.1016/j.nucengdes.2004.08.018
  4. S. Kasahara, G. J. Hwang, H. Nakajima, H. S. Choi, K. Onuki, and M. Nomura, "Effects of process parameters of the IS process on total thermal efficiency to produce hydrogen from water", J. Chem. Eng. Japan, Vol. 36, No. 7, 2003, p. 887. https://doi.org/10.1252/jcej.36.887
  5. S. Kasahara, S. Kubo, K. Onuki, and M. Nomura, "Thermal efficiency evaluation of HI synthesis/ concentration procedures in the thermochemical water splitting IS process", Int. J. Hydrogen Energy, Vol. 29, No. 6, 2004, p. 579. https://doi.org/10.1016/j.ijhydene.2003.08.005
  6. S. Goldstein, J. M. Borgard, and X. Vitart, "Upper bound and best estimate of the efficiency of the iodine sulfur cycle", Int. J. Hydrogen Energy, Vol. 30, No. 6, 2005, p. 619. https://doi.org/10.1016/j.ijhydene.2004.06.005
  7. S. Kubo, H. Nakajima, and A. Onuki, "A demonstration study on a closed-cycle hydrogen production by the thermochemical water-splitting iodine-sulfur process", Nucl. Eng. Des., Vol. 233, No. 1-3, 2004, p. 347. https://doi.org/10.1016/j.nucengdes.2004.08.025
  8. A. Giaconia, G. Caputo, and S. Sau, "Experimental study of two phase separation in the Bunsen section of the sulfur-iodine thermochemical cycle", Int. J. Hydrogen Energy, Vol. 32, No. 5, 2007, p. 531. https://doi.org/10.1016/j.ijhydene.2006.08.015
  9. J. H. Norman, G. E. Besenbruch, and D. R. O'keefe, "Thermochemical water-splitting for hydrogen production", GRI-80/0105, Gas Research Institute, 1981.
  10. N. Sakaba, S. Kasahara, K. Onuki, and K. Kunitomi, "Conceptual design of hydrogen production system with thermochemical water-splitting iodine-sulphur process utilizing heat from the high-temperature gas-cooled reactor HTTR", Int. J. Hydrogen Energy, Vol. 32, No. 17, 2007, p. 4160. https://doi.org/10.1016/j.ijhydene.2007.06.005
  11. K. Y. Lee, H. G. Kim, K. D Jung, and C. S. Kim, "$SO_{2}/O_{2}$Separation Process with EMlm[EtSO4] in SI Cycle for the Hydrogen Production by Water Splitting", Trans. of the Korean Society of Hydrogen Energy, Vol. 22, No. 1, 2011, p. 13.
  12. K. Y. Lee, K. H. Song, K. S. Yoo, H. G. Kim, K. D. Jeong, and C. S. Kim, "$SO_{2}/O_{2}$ Separation with [DMlm]$MeSO_{4}$ in IS cycle", Trans. of the Korean Society of Hydrogen Energy, Vol. 19, No. 1, 2008, p. 49.
  13. T. H. Kim, C. H. Shin, O. S. Joo, and K. D. Jung, "$SO_{3}$ Decomposition Catalysis in SI Cycle to Produce Hydrogen", Trans. of the Korean Society of Hydrogen Energy, Vol. 22, No. 1, 2011, p. 21.
  14. P. Zhang, S. Z. Chen, L. J. Wang, T. Y. Yao, and J. M. Xu, "Study on a lab-scale hydrogen production by closed cycle thermo-chemical iodinesulfur process", Int. J. Hydrogen Energy, Vol. 35, No. 19, 2010, p. 10166. https://doi.org/10.1016/j.ijhydene.2010.07.150
  15. W. C. Cho, C. S. Park, K. S. Kang, C. H. Kim, and K. K. Bae, "Conceptual design of sulfur-iodine hydrogen production cycle of Korea Institute of Energy Research", Nucl. Eng. Des., Vol. 239, No. 3, 2009, p. 501. https://doi.org/10.1016/j.nucengdes.2008.11.017
  16. M. B. Richards, A. S. Shenoy, L. C. Brown, R. T. Buchingham, E. A. Harvego, K. L. Peddicord, S. M. M. Reza, and J. P. Coupey, "$H_{2}$-MHR pre-conceptual design report: S-I-based plant", GA-A25401, General Atomics Report, 2006.
  17. K. J. Lee, S. H. Ahn, Y. H. Kim, C. S. Park, and K. K. Bae, "The Comparison of Bunsen Reaction with Phase Separation in Sulfur-Iodine Thermochemical Hydrogen Production Process", Trans. of the Korean Society of Hydrogen Energy, Vol. 19, No. 2, 2008, p. 111.
  18. K. J. Lee, Y. H. Kim, C. S. Park, and K. K. Bae, "Phase Separation Characteristics via Bunsen Reaction in Sulfur-Iodine Thermochemical Hydrogen Production Process", Trans. of the Korean Society of Hydrogen Energy, Vol. 19, No. 5, 2008, p. 386.
  19. K. J. Lee, D. W. Hong, Y. H. Kim, C. S. Park, and K. K. Bae, "The Control of Side Reactions in Bunsen Reaction Section of Sulfur-Iodine Hydrogen Production Process", Trans. of the Korean Society of Hydrogen Energy, Vol. 19, No. 6, 2008, p. 490.
  20. D. W. Hong, H. S. Kim, Y. H. Kim, C. S. Park, and K. K. Bae, "The Role of Oxygen in Bunsen Reaction Section of Sulfur-Iodine Hydrogen Production Process", Trans. of the Korean Society of Hydrogen Energy, Vol. 21, No. 4, 2010, p. 278.
  21. L. C. Brown, G. E. Besenbruch, R. D. Lentsch, K. R. Schultz, J. F. Funk, P. S. Pickard, A. C. Marshall, and S. K. Showalter, "High efficiency generation of hydrogen fuels using nuclear power", GRI-80/0105, Gas Research Institute, 2002.

Cited by

  1. Effects of Solubility of SO2 Gas on Continuous Bunsen Reaction using HIx Solution vol.27, pp.1, 2016, https://doi.org/10.7316/KHNES.2016.27.1.013