The conventional fixed gain PI controller is very sensitive to step change of command speed, parameter variation and load disturbances. The precise speed control of interior permanent magnet synchronous motor(IPMSM) drive becomes a complex issue due to nonlinear coupling among its winding currents and the rotor speed as well as the nonlinear electromagnetic developed torque. Therefore, there exists a need to tune the PI controller parameters on-line to ensure optimum drive performance over a wide range of operating conditions. This paper is proposed artificial intelligent-PI(AIPI) controller of IPMSM drive using adaptive learning mechanism(ALM) and fuzzy neural network(FNN). The proposed controller is developed to ensure accurate speed control of IPMSM drive under system disturbances and estimation of speed using artificial neural network(ANN) controller. The PI controller parameters are optimized by ALM-FNN at all possible operating condition in a closed loop vector control scheme. The validity of the proposed controller is verified by results at different dynamic operating conditions.
The measurement of three-phase current is important to control the instantaneous torque of a interior permanent magnet synchronous motor(IPMSM) using a three-phase inverter. Therefore, shunt resistors are used in low-cost motor-driving systems to measure three-phase current instead of additional current sensors that are too expensive for these systems. However, in certain regions of a space vector plane, shunt resistors cannot reconstruct three-phase current in high-speed driving mode. In this paper, predictive current control is used to compensate for the three-phase current in those regions, which results in a reduction of current ripple in a three-shunt sensing inverter(TSSI) and torque ripple in IPMSM.
IPMSM은 하중에 비하여 고출력으로 인하여 전기자동차에 널리 보급되고 있다. 본 논문은 적응 학습 퍼지-신경회로망과 ANN을 이용한 IPMSM드라이브의 최대토크 제어를 제시한다. 이러한 제어 방법은 인버터의 정격전류 및 전압값의 범위를 고려한 전속도 영역에 적용 된다. 본 논문은 적응학습 퍼지-신경회로망을 이용하여 IPMSM의 속도제어와 ANN을 이용하여 속도를 추정을 제시한다. 신경회로망의 역전파 알고리즘은 전동기 속도의 실시간 추정을 제시하는데 사용된다. 제시된 제어 알고리즘은 적응학습 퍼지-신경회로망과 ANN 제어기를 IPMSM 드라이브에 적용된다. 최대토크에 의해 제어된 동작 특성은 세부적으로 실험한다. 또한 본 논문은 적응 학습 퍼지 신경회로망과 ANN의 효과를 결과 분석을 통해 제시한다.
This paper presents the rotor study on the deal with the shape design with a flux barrier to minimize the cogging torque of Interior Permanent Magnet Synchronous Motor(IPMSM). In order to consider the notch effect, the torque characteristics according to the shape of notch is performed and analyzed. From the this results, we found that an optimal location and radius of the notch effectively suppresses the torque pulsation of the IPM drive. The rotor shape design also shows improvement in the average torque
본 논문은 매입형 영구자석 동기모터(IPMSM: Interior Permanent Magnet Synchronous Motor)에서 발생하는 소음의 원인을 유추하고 해석적, 실험적 방법을 통하여 소음을 평가한다. 또한 비교 모델의 실험을 수행하여 측정된 데이터에 따른 소음 값을 비교 분석한다. 대상 모델은 12극 18슬롯이고 슬롯 오픈의 유무에 따른 주파수 분석 및 소음을 측정하였다. 기존 전동기와 비교 모델 전동기의 소음 결과를 분석하였고 슬롯 오픈 유무에 따라 소음이 발생하는 것을 확인하였다.
본 논문에서는 유도 전동기와 매입형 영구자석 동기 전동기(IPMSM)의 센서리스 운전 성능의 비교 및 분석에 대해 기술하였다. 유도 전동기는 자속을 추정하여 회전자 위치를 얻는 두 가지 방식의 알고리즘을 기술하였고, 매입형 영구자석 동기 전동기는 역기전력을 추정하여 회전자 위치를 얻는 방식을 기술하였다.
MSIS(Modular Scalable Inverter System)에서 모터 구동 시 발생하는 고주파 성분의 순환 전류는 구동 시스템의 효율 및 신뢰성을 저하시키기 때문에, 이를 저감하기 위한 PWM(Pulse Width Modulation) 동기화 기법의 구현이 필수적으로 요구 된다. 본 논문은 MSIS에서 PWM 동기화 기법을 적용하기 위한 모터 구동 인버터용 제어보드의 설계에 관한 것이다. 제어보드 간 PWM 동기화 기법을 적용하기 위해 DSP(Digital Signal Processor)의 EPWMSYNC를 활용하였다. EPWMSYNC은 서로 다른 DSP간 PWM의 위상을 동기화하는 기능으로 DSP의 EPWMSYNCO과 EPWMSYNCI를 사용한다. 설계한 제어보드는 EPWMSYNC 신호를 광케이블을 통해 다른 제어보드로 연결할 수 있도록 설계하여, 제어보드 간의 절연과 잡음의 영향을 최소화했다. 본 논문에서 설계한 제어보드의 EPWMSYNC를 시험하였으며, 600W급 IPMSM(Interior Permanent Magnet Synchronous Motor)을 부하로 사용하는 시스템에서 설계된 제어보드의 유효성을 검증하였다.
IPMSM 드라이브는 하중 비에 대한 출력이 우수하여 전기자동차 등 응용분야에서 관심이 증가하고 있다. 이러한 응용분야에서 최대 효율을 얻기 위하여 본 논문은 신경회로망 제어기법을 제시한다. 동손과 철손으로 구성된 제어가능한 전기적 손실은 신경회로망의 오류 역전파 알고리즘(EBPA)를 이용하여 최소화시킬 수 있다. 손실의 최소화는 IPMSM 드라이브의 효율 최적화 제어를 가능하게 한다. 본 논문에서는 신경회로망의 EBPA를 이용하여 전동기 구동에 대하여 d축 인덕턴스, 전기자 저항, 역기전력 상수 변화와 같은 파라미터 변동을 시간으로 계산하여 고성능 및 강인성 제어를 제시한다. 제시한 알고리즘은 IPMSM 드라이브 시스템에 적용하고 효율최적화 제어에 의해 제어된 동작특성을 분석하여 논문의 타당성을 입증한다.
영구자석 매립형 동기전동기는 고효율, 소형화 및 넓은 가변속운전 등의 특성으로 인해 전기자동차에 적용되고 있다. 본 논문에서는 유기전압이 고조파를 함유하고 있는 영구자석 동기전동기에 대하여 고속운전 시 약자속 운전 영역의 해석에 대해 제안한다. 유기전압의 고조파가 전동기 속도와 최대토크에 미치는 영향을 해석하고 전압제한 및 전류제한 조건에서 최대토크 운전을 위한 dq 전류에 대해 분석한다. 약자속 운전영역에 대한 기존 및 제안된 해석결과를 비교하고 최대토크-속도 특성의 실험을 통하여 해석결과를 검증한다.
Interior permanent magnet synchronous motor(IPMSM) has become a popular choice in electric vehicle applications, due to their excellent power to weight ratio. This paper proposes maximum torque control of IPMSM drive using adaptive fuzzy neural network controller and artificial neural network(ANN). This control method is applicable over the entire speed range which considered the limits of the inverter's current and voltage rated value. For each control mode, a condition that determines the optimal d-axis current $i_d$ for maximum torque operation is derived. This paper considers the design and implementation of novel technique of high performance speed control for IPMSM using Adaptive-FNN controller and ANN controller. The hybrid combination of neural network and fuzzy control will produce a powerful representation flexibility and numerical processing capability. Also, this paper reposes speed control of IPMSM using Adaptive-FNN and estimation of speed using ANN controller. The back propagation neural network technique is used to provide a real time adaptive estimation of the motor speed. The proposed control algorithm is a lied to IPMSM drive system controlled Adaptive-FNN and ANN controller, the operating characteristics controlled by maximum torque control are examined in detail. Also, this paper proposes the analysis results to verify the effectiveness of the Adaptive-FNN and ANN controller.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.