• Title/Summary/Keyword: IPM type BLDC motor

Search Result 39, Processing Time 0.026 seconds

Analysis of vibration characteristic according to operation method in IPM motor (IPM 전동기의 구동 방식에 따른 진동 특성 분석)

  • Lee, Gyeong-Deuk;Lee, Won-Sik;Kim, Gyu-Tak
    • Proceedings of the KIEE Conference
    • /
    • 2015.07a
    • /
    • pp.835-836
    • /
    • 2015
  • 본 논문에서는 IPM type 전동기의 구동 방식에 따른 진동 특성을 비교, 분석하였다. BLDC 구동 방식은 2상에만 전원이 인가되므로 Commutation torque ripple 및 가진력의 불평형이 발생하여 기계손이 증가하고 진동, 소음이 크게 되어 효율이 떨어지므로 3상 구동 방식과 BLDC 구동방식에 따른 진동 및 출력 특성을 비교, 검토하였다.

  • PDF

Optimization of Magnetic Flux-path Design for Reduction of Shaft Voltage in IPM-Type BLDC Motor

  • Kim, Kyung-Tae;Hur, Jin
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.6
    • /
    • pp.2187-2193
    • /
    • 2014
  • In this paper, we propose a method for suppressing shaft voltage by modifying the rotor shape and the permanent magnets in interior permanent magnet type high voltage motors. The shaft voltage, which adversely affects the bearing by occurring bearing current, is induced by parasitic components and the leakage flux in motor-driven systems as well as inherent linkage flux between main magnetic flux and shaft according to rotor configuration. Thus, shaft voltage should be analyzed and considered under inverter-driven and non-inverter-driven conditions because inherent linkage flux can analyze under non-inverter-driven condition. In this study, we designed re-arrangement magnet and re-structuring rotor to minimize the shaft voltage. In addition, we optimized the proposed models. The shaft voltage suppression effect of the designed model was validated experimentally and by comparative finite element analysis.

Hybrid method for design of IPM type BLDC Motor to reduce cogging torque (IPM type BLDC 전동기의 코깅토크 저감을 위한 Hybrid 최적설계)

  • Hwang, Hyu-Yun;Rhee, Sang-Bong;Kwon, Byung-Il
    • Proceedings of the KIEE Conference
    • /
    • 2007.04c
    • /
    • pp.74-76
    • /
    • 2007
  • A hybrid optimization method is proposed for cogging torque reducing in BLDC motor. The proposed hybrid optimization method comprises a response surface method (RSM) and a gradient search method (GSM). The RSM is effective and global method in optimization problem but having large approximation error. The GSM is accurate and fast search method for optimal solution but having local behavior. To reduce approximation error and computation time a hybrid method (RSM+GSM) is proposed method. To illustrate the effectiveness of the proposed method, a comparison between conventional RSM and the proposed hybrid method is made. A simulation results verify that the hybrid method can achieve favorable design performance.

  • PDF

The Study of Vibration Reduction for IPM Type Motor (II) (IPM type 전동기의 진동 저감 방안에 대한 연구 (II))

  • Lee, Gyeong-Deuk;Lee, Won-Sik;Kim, Gyu-Tak
    • Proceedings of the KIEE Conference
    • /
    • 2015.07a
    • /
    • pp.896-897
    • /
    • 2015
  • 본 논문에서는 IPM type BLDC 전동기의 진동 저감 방안에 대해서 연구하였다. 전자기적 진동 발생원 중 주된 요인이 되는 코깅 토크와 반경방향 힘의 불평형에 대해서 노치를 설치하여 코깅토크를 최소화한 모델과 반경반향의 힘인 가진력을 평형화한 모델의 설계를 수행하였다. 각 모델에 대한 주파수별 진동원을 분석하고 진동 실험의 결과와 비교하여 분석하여 그 타당성을 입증하였다.

  • PDF

Fault Tolerance Improvement of IPM Type BLDC Motor Considering Winding Configuration under a Stator Inter-Turn Fault Condition (Stator inter-turn fault 발생 시 권선 방식에 따른 IPM Type BLDC Motor의 Fault Tolerance 향상)

  • Kim, Hee-Woon;Yoon, Jin-Gyu;Hur, Jin
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.3
    • /
    • pp.524-530
    • /
    • 2011
  • This paper analyzes fault tolerance under a stator turn fault, according to the winding configuration. Improvement of torque characteristics and fault tolerance can be achieved by winding configuration without additional methods. And, torque characteristics and fault tolerance according to the winding configuration can be usually analyzed by analytical method. But, when the stator turn fault generates, compare to the steady-state, analysis of torque characteristics and fault tolerance using the analytical method is not accurate because it does not reflect influence in mutual inductance and magnetic non-linearity. Therefore, analysis of torque characteristics and fault tolerance has to be performed by using the numerical method under fault condition. This paper develops fault characteristics according to the winding configuration using the FEM-base model considered magnetic non-linearity. And, this paper suggests fault tolerance improvement according to the winding configuration, by the comparison of 8/12 and 10/12 models, under fault condition.

A Study on the Development of the BLDC Motor for 42V Automotive EHPS (42V 자동차 EHPS용 BLDC 모터 개발에 관한 연구)

  • Rhyu, Se-Hyun;Kim, Young-Kyoun;Hur, Jin;Sung, Ha-Gyeong
    • Proceedings of the KIEE Conference
    • /
    • 2007.04c
    • /
    • pp.119-121
    • /
    • 2007
  • The increment of electric power demand causes interest on new higher power system such as 42V Power Net, and furthermore necessity for development of energy storage device is highlighted recently. Owing to high efficiency and easy speed control of brushless DC(BLDC) motor, the demand of BLDC motor that has high power and low noises are increasing. Especially demand of interior permanent magnet(IPM) type BLDC with high efficiency and high power in electric motion vehicle is increasing. This paper presents the design of the BLBC motor for EHPS(Electro-Hydraulic Power Steering) in 42V system and verified the characteristics by simulation and test results.

  • PDF

Modifide Taguchi Method for Novel Flux Barrier Design in IPM Type BLDC Motor (Taguchi Method를 이용한 영구자석 모터의 자속 장벽 설계)

  • Yang, Byoung-Yuil;Park, Hyun-Kag;Hwang, Kyu-Yun;Kwon, Byung-Il
    • Proceedings of the KIEE Conference
    • /
    • 2007.04c
    • /
    • pp.65-67
    • /
    • 2007
  • This paper proposes a novel flux barrier in q-axis of rotor in IPM type BLDC motor, The proposed flux barrier can reduce cogging torqeu and diminisg torque ripple by sinusoidal waveform distribution of flux generated in the permanent magnet. To determine the optimal shape of the novel flux barrier, we also propose a modified Taguchi method which considering multiple quality characteristics, such as cogging torque, average torque, and efficiency. The proposed design and method were analyzed by using the 2D finite element method (FEM). Results of the proposed model were compared with initial model.

  • PDF

Fault Analysis of IPM type BLDC Motor Using Nonlinear Modeling of Stator Inter Turn Faults (고정자 절연파괴 비선형 모델링을 이용한 매입형 영구자석 전동기의 고장분석)

  • Kim, Kyung-Tae;Hur, Jin
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.3
    • /
    • pp.531-537
    • /
    • 2011
  • This paper proposes a finite element method (FEM)-based model of an interior permanent magnet (IPM) type BLDC motor having stator inter-turn faults. For more realistic simulation studies, the magnetic non-linearity is also considered in proposed model. And the simulation data are verified through experiment. By integrating the developed model with a current-controlled voltage source inverter (CCVSI) model, the characteristics of an inter-turn fault operated by six-switched inverter are investigated considering the speed control. And the circulating current, which is induced by magnetic linkage flux originated from PM, was analyzed from the view point of distortion of air-gap magnetic flux distribution caused deterioration of their torque.

Speed control system design using dual core DSP(TMS320F28377D) for the 2 Axis BLDC motor control (2축 BLDC 전동기 제어를 위한 듀얼코어 DSP(TMS320F28377D)를 이용하는 속도 제어 시스템 설계)

  • Lee, Dong-ju;Kim, Hee-chel;Lee, Dong-hyun;Choi, Jung-keyng
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2017.10a
    • /
    • pp.232-234
    • /
    • 2017
  • In this research, the BLDC motor 2 axis controller was designed using a dual core processor. The controller used TMS320F28377D which is TI's latest dual-core DSP, and the BLDC motor was selected with the position of resolver having high reliavility and the speed sensor built-in type motor.

  • PDF

The Design of an Auto Tuning PI Controller using a Parameter Estimation Method for the Linear BLDC Motor (선형 추진 BLDC 모터에 대한 파라미터 추정 기법을 이용하는 오토 튜닝(Auto Tuning) PI 제어기 설계)

  • Cha Young-Bum;Song Do-Ho;Koo Bon-Min;Park Moo-Yurl;Kim Jin-Ae;Choi Jung-Keyng
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.10 no.4
    • /
    • pp.659-666
    • /
    • 2006
  • Servo-motors are used as key components of automated system by performing precise motion control as accurate positioning and accurate speed regulation in response to the commands from computers and sensors. Especially, the linear brushless servo-motors have numerous advantages over the rotary servo motors which have connection with the friction induced transfer mechanism such as ball screws, timing belts, rack/pinion. This paper proposes an estimation method of unknown motor system parameters using the informations from the sinusoidal driving type linear brushless DC motor dynamics and outputs. The estimated parameters can be used to tune the controller gain and a disturbance observer. In order to meet this purpose high performance Digital Signal Processor, TMS320F240, designed originally for implementation of a Field Oriented Control(FOC) technology is adopted as a controller of the liner BLDC servo motor. Having A/D converters, PWM generators, rich I/O port internally, this servo motor application specific DSP play an important role in servo motor controller. This linear BLDC servo motor system also contains IPM(Intelligent Power Module) driver and hail sensor type current sensor module, photocoupler module for isolation of gate signals and fault signals.