• Title/Summary/Keyword: IPM 전동기

Search Result 102, Processing Time 0.029 seconds

Development of AC Electric Vehicle Propulsion System (Converter/Inverter) using IPM Switching Device (IPM 스위칭 소자를 적용한 AC 전동차 추진제어장치 (Converter/Inverter) 개발)

  • Kno Ae-Sook;Kim Tae-Yun
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.10 no.3
    • /
    • pp.233-240
    • /
    • 2005
  • In this paper, AC electric vehicle propulsion system(Converter/Inverter) using high power semiconductor, IPM is proposed. 2-Parallel operation of two PWM converter is adopted for increasing capacity of system and the harmonic content is eliminated by the phase shaft between two PWM converters switching phase. VVVF inverter control is used a mixed control algorithm, where the vector control strategy at low speed region and slip-frequency control strategy at high speed region. The proposed propulsion system is verified by experimental results with a 1,350kW converter and 1,100kVA inverter with four 210kW traction motors.

An Optimal Design of Notch Shape of IPM BLDC Motor Using the Differential Evolution Strategy Algorithm (차분진화 알고리즘을 이용한 IPM형 BLDC전동기의 Notch 형상 최적화 설계 연구)

  • Shin, Pan Seok;Kim, Hong Uk
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.2
    • /
    • pp.279-285
    • /
    • 2016
  • In this paper, a cogging torque of IPM(Interior Permanent Magnet)-type BLDC motor is analyzed by FE program and the optimized notch on the rotor surface is designed to minimize the torque ripple. A differential evolution strategy algorithm and a response surface method are employed to optimize the rotor notch. In order to verify the proposed algorithm, an IPM BLDC motor is used, which is 50 kW, 8 poles, 48 slots and 1200 rpm at the rated speed. Its characteristics of the motor is calculated by FE program and 4 design variables are set on the rotor notch. The initial shape of the notch is like a non-symmetric half-elliptic and it is optimized by the developed algorithm. The cogging torque of the final model is reduced to $1.5[N{\cdot}m]$ from $5.2[N{\cdot}m]$ of the initial, which is about 71 % reduction. Consequently, the proposed algorithm for the cogging torque reduction of IPM-type BLDC motor using the rotor notch design seems to be very useful to a mechanical design for reducing noise and vibration.

Torque Ripple Minimization for IPMSM with Non Sinusoidal Back-EMF (비정현적인 역기전력을 가진 매입형 영구자석 동기전동기의 토크리플 저감에 관한 연구)

  • 이상훈;홍인표;박성준;김철우
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.7 no.1
    • /
    • pp.91-100
    • /
    • 2002
  • This paper deals with the ripple reduction of the electromagnetic torque developed in IPMSM(Interior Permanent Magnet Synchronous Motor). Generally, torque ripple is an important causes of vibration and noise of motor. For reducing torque ripple in IPM with nonsinusoidal EMF, the optimal current which is able to control maximum torque/ampere is considered to be introduced In the proposed method. The fact of torque ripple being reduced when the optimal current Is used in motor is verified through simulation and experiment.

Field Weakening Control of IPMSM for High Speed Operation (영구자석 동기전동기의 약계자제어에 의한 고속 운전)

  • Yoon, Byung-Do;Kim, Yoon-Ho;Kim, Choon-Sam;Lee, Byung-Song;Kim, Soo-Yeol
    • Proceedings of the KIEE Conference
    • /
    • 1994.07a
    • /
    • pp.588-590
    • /
    • 1994
  • This paper describes current controlled PWM technique of IPM synchronous motors for a wide variety of speed control applications. The IPM synchronous motors have a saliency, in which the q-axis inductance is larger than the d-axis inductance. As a consequence, there exists a reluctance torque component Thus when this component is added to the torque component produced by the stator currents and the air-gap flux, IPM motor drives are readily applicable where full torque Is required up to full or base speed. They are however limited in their ability to operate in the power limited regime where the available torque is reduced as the speed is increased above its base value. This paper reviews the operation of the IPMSM drives when they are constrained to be within the permissible envelope of maximum inverter voltage and current to produce the rated power and to provide this with the highest attainable rotor speed. The wide variety of speed control strategy is analyzed and the performance is investigated by the computer simulation using actual parameters of a drive system. Simulation results are given and discussed.

  • PDF

Inductance Estimation Method of IPM Machine (매입형 영구자석 동기전동기의 인덕턴스 추정)

  • Kwon, Young-Su;Park, Kyeoug-Hun;Han, Kyung-Sik
    • Proceedings of the KIPE Conference
    • /
    • 2010.07a
    • /
    • pp.320-321
    • /
    • 2010
  • 본 논문에서는 신호주입을 이용하여 매입형 영구자석 동기전동기(IPMSM)의 벡터제어에 필요한 d,q축 인덕턴스를 전동기가 정지한 상태에서 추정하는 방법을 제안하였다. IPMSM의 경우 초기 기동토크를 제대로 발생시키고 d,q 축 인덕턴스의 차이에 의해 발생하는 릴럭턴스 토크를 효과적으로 이용하기 위해서 이 인덕턴스 값은 반드시 필요하다. 제안하는 추정방법은 매우 짧은 시간에 수행되어지며 복잡한 연산이 필요하지 않으므로 산업현장에서 매우 유용하게 적용 될 것이다.

  • PDF

Vector control of Induction motor drive system of dSPACE system (dSPACE 시스템에 의한 유도전동기 구동 시스템의 벡터 제어)

  • Ji, Jun-Keun;Lee, Dong-Min
    • Proceedings of the KAIS Fall Conference
    • /
    • 2006.05a
    • /
    • pp.284-287
    • /
    • 2006
  • 본 논문에서는 dSPACE사의 PowerPC603e과 TMS320F240를 사용하는 dSPACE시스템에 의한 유도전동기 구동 시스템의 벡터제어에 대하여 소개한다. MATLAB/Simulink 소프트웨어와 DS1104 R&D 제어보드, Leroy SOMER사의 0.3KW 유도전동기와 IPM 인버터를 본 연구에 사용하였다. dSPACE 시스템은 Simulink 블록들을 사용함으로써 짧은 시간동안에 다양한 형태의 제어기를 설계 및 구현할 수 있는 장점이 있기 때문에 유도전동기의 벡터제어를 쉽게 설계하고 구현할 수 있다.

  • PDF

A Fault-Tolerant Scheme for Direct Torque Controlled Induction Motor Drives (직접토크제어 유도전동기의 센서 이상허용 제어)

  • 류지수;이기상
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.7 no.4
    • /
    • pp.366-376
    • /
    • 2002
  • A sensor fault detection and isolation scheme(SFDIS) is adopted to improve the reliability of direct torque controlled induction motor drives and the experimental results are discussed. Major contributions include: experimental analysis of a few important sensor faults. design and implementation of the proposed SFDIS, and the fault tolerant control system(FTCS). Although the adopted SFDIS employs only one observer for residual generation, the system has the function of fault isolation that only multiple observer schemes can have. To verify the performance of the proposed scheme, the speed control system is designed for the 2.2kW direct torque controlled Induction motor. Hardware of the control system consists of a control board using TMS320OVC33 and a power stack using IPM. Experimental results for various type of sensor faults show the effectiveness of the SFDIS and the FTCS.

Study on Noise and Vibration in the Interior Permanent Magnet Motor (IPM 전동기의 진동소음에 대한 연구)

  • Lee, Sang-Ho;Kim, Ji-Min;Kim, Do-Jin;Hong, Jung-Pyo
    • Proceedings of the KIEE Conference
    • /
    • 2009.07a
    • /
    • pp.853_854
    • /
    • 2009
  • This paper deals with the analysis of noise sources in interior permanent magnet (IPM) motor considering the natural frequencies of stator and electromagnetic forces. In order to analyze the noise generated from the vibration of stator, measured acceleration of stator is compared with calculated acceleration using electromagnetic forces and harmonic analysis.

  • PDF

Hybrid method for design of IPM type BLDC Motor to reduce cogging torque (IPM type BLDC 전동기의 코깅토크 저감을 위한 Hybrid 최적설계)

  • Hwang, Hyu-Yun;Rhee, Sang-Bong;Kwon, Byung-Il
    • Proceedings of the KIEE Conference
    • /
    • 2007.04c
    • /
    • pp.74-76
    • /
    • 2007
  • A hybrid optimization method is proposed for cogging torque reducing in BLDC motor. The proposed hybrid optimization method comprises a response surface method (RSM) and a gradient search method (GSM). The RSM is effective and global method in optimization problem but having large approximation error. The GSM is accurate and fast search method for optimal solution but having local behavior. To reduce approximation error and computation time a hybrid method (RSM+GSM) is proposed method. To illustrate the effectiveness of the proposed method, a comparison between conventional RSM and the proposed hybrid method is made. A simulation results verify that the hybrid method can achieve favorable design performance.

  • PDF

Rotor Pole Shape Design for Reducing a Cogging Torque in Spoke Type BLDC Motor (코깅 토오크 저감을 위한 Spoke형 BLDC 전동기의 회전자 극 형상설계에 관한 연구)

  • Hwang, Kyu-Yun;Rhee, Sang-Bong;Yang, Byoung-Yull;Kwon, Byung-Il
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.56 no.5
    • /
    • pp.860-868
    • /
    • 2007
  • In this paper. design of spoke type BLDC motor which have a characteristics of concentrating fluxes and relatively high reluctance torque among IPM BLDC motors has been researched. To reduce cogging torque and torque ripple. rotor pole shape of optimal design is proposed. To clearly see the effects due to the changed rotor pole shape. magnetic circuit model. 2D FEM and design of experiments (DOE) are used. Then considering these results proper rotor pole shape which have an good effect on air gap flux density and cogging torque. back-emf is designed. Moreover. the validity of proposed model in this paper is also verified by comparison between gained experiment and analysis data.