• Title/Summary/Keyword: INTEGRAL METHOD

Search Result 2,348, Processing Time 0.025 seconds

Development of 3-D J-Integral Calculation Method for Structural Integrity Evaluation (기기 건전성 평가를 위한 3차원 J-적분 계산 전산코드 응용평가 연구)

  • Kim, Young-Jin
    • Proceedings of the KIEE Conference
    • /
    • 1999.11b
    • /
    • pp.450-454
    • /
    • 1999
  • In order to evaluate the integrity of nuclear power plants, J-integral calculation is crucial. For this purpose, finite element method is popularly used to obtain J-integral. However, high cost time consuming preprocess should be performed to design the finite element model of a cracked structure. Also, the J-integral should be verified by alternative method since it may differ depending on the calculation method. The objective of this paper is to develop a three-dimensional elastic-plastic J-integral analysis system which is named as EPAS. The EPAS program consists of an automatic mesh generator for a through-wall crack and a surface crack, a solver based on ABAQUS program, and a J-integral calculation program which provides DI(Domain Integral) and EDI(Equivalent Domain Integral) based J-integral calculation. Using the EPAS program, an optimized finite element model for a cracked structure can be generated and corresponding J-integral can be obtained subsequently.

  • PDF

Computational Implementation of Asymmetric Integral Imaging by Use of Two Crossed Lenticular Sheets

  • Shin, Dong-Hak;Cho, Myung-Jin;Kim, Eun-Soo
    • ETRI Journal
    • /
    • v.27 no.3
    • /
    • pp.289-293
    • /
    • 2005
  • We propose an asymmetric integral imaging method to adjust the resolution and depth of a three-dimensional image. Our method is obtained by use of two lenticular sheets with different pitches fabricated under the same F/#. The asymmetric integral imaging is the generalized version of integral imaging, including both conventional integral imaging and one-dimensional integral imaging. We present experimental results to test and verify the performance of our method computationally.

  • PDF

A B-Spline Higher Order Panel Method Applied to the Radiation Wave Problem for a 2-D Body Oscillating on the Free Surface

  • Hong, D.C.;Lee, C.-S.
    • Journal of Ship and Ocean Technology
    • /
    • v.3 no.4
    • /
    • pp.1-14
    • /
    • 1999
  • The improved Green integral equation using the Kelvin-type Green function in known free of irregular frequencies where the integral over the inner free surface integral is removed from the integral equation, resulting in an overdetermined integral equation. The solution of the overdetermined Green integral equation is shown identical with the solution of the improved Green integral equation Using the B-spline higher order panel method, the overdetermined equation is discretized in two different ways; one of the resulting linear system is square and the other is redundant. Numerical experiments show that the solutions of both are identical. Using the present methods, the exact values and higher derivatives of the potential at any place over the wetted surface of the body can be found with much fewer panels than low order panel method.

  • PDF

J-integral calculation by domain integral technique using adaptive finite element method

  • Phongthanapanich, Sutthisak;Potjananapasiri, Kobsak;Dechaumphai, Pramote
    • Structural Engineering and Mechanics
    • /
    • v.28 no.4
    • /
    • pp.461-477
    • /
    • 2008
  • An adaptive finite element method for analyzing two-dimensional and axisymmetric nonlinear elastic fracture mechanics problems with cracks is presented. The J-integral is used as a parameter to characterize the severity of stresses and deformation near crack tips. The domain integral technique, for which all relevant quantities are integrated over any arbitrary element areas around the crack tips, is utilized as the J-integral solution scheme with 9-node degenerated crack tip elements. The solution accuracy is further improved by incorporating an error estimation procedure onto a remeshing algorithm with a solution mapping scheme to resume the analysis at a particular load level after the adaptive remeshing technique has been applied. Several benchmark problems are analyzed to evaluate the efficiency of the combined domain integral technique and the adaptive finite element method.

A Regularization-direct Method to Numerically Solve First Kind Fredholm Integral Equation

  • Masouri, Zahra;Hatamzadeh, Saeed
    • Kyungpook Mathematical Journal
    • /
    • v.60 no.4
    • /
    • pp.869-881
    • /
    • 2020
  • Most first kind integral equations are ill-posed, and obtaining their numerical solution often requires solving a linear system of algebraic equations of large condition number, which may be difficult or impossible. This article proposes a regularization-direct method to numerically solve first kind Fredholm integral equations. The vector forms of block-pulse functions and related properties are applied to formulate the direct method and reduce the integral equation to a linear system of algebraic equations. We include a regularization scheme to overcome the ill-posedness of integral equation and obtain a stable numerical solution. Some test problems are solved using the proposed regularization-direct method to illustrate its efficiency for solving first kind Fredholm integral equations.

On the Vibration Analysis of the Floating Elastic Body Using the Boundary Integral Method in Combination with Finite Element Method

  • K.T.,Chung
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.24 no.4
    • /
    • pp.19-36
    • /
    • 1987
  • In this research the coupling problem between the elastic structure and the fluid, specially the hydroelastic harmonic vibration problem, is studied. In order to couple the domains, i.e., the structural domain and the fluid domain, the boundary integral method(direct boundary integral formulation) is used in the fluid domain in combination with the finite element method for the structure. The boundary integral method has been widely developed to apply it to the hydroelastic vibration problem. The hybrid boundary integral method using eigenfunctions on the radiation boundaries and the boundary integral method using the series form image-functions to replace the even bottom and free surface boundaries in case of high frequencies have been developed and tested. According to the boundary conditions and the frequency ranges the different boundary integral methods with the different idealizations of the fluid boundaries have been studied. Using the same interpolation functions for the pressure distribution and the displacement the two domains have been coupled and using Hamilton principle the solution of the hydroelastic have been obtained through the direct minimizing process. It has become evident that the finite-boundary element method combining with the eigenfunction or the image-function method give good results in comparison with the experimental ones and the other numerical results by the finite element method.

  • PDF

NUMERICAL SOLUTION OF ABEL'S GENERAL FUZZY LINEAR INTEGRAL EQUATIONS BY FRACTIONAL CALCULUS METHOD

  • Kumar, Himanshu
    • Korean Journal of Mathematics
    • /
    • v.29 no.3
    • /
    • pp.527-545
    • /
    • 2021
  • The aim of this article is to give a numerical method for solving Abel's general fuzzy linear integral equations with arbitrary kernel. The method is based on approximations of fractional integrals and Caputo derivatives. The convergence analysis for the proposed method is also given and the applicability of the proposed method is illustrated by solving some numerical examples. The results show the utility and the greater potential of the fractional calculus method to solve fuzzy integral equations.

THE INDIRECT BOUNDARY INTEGRAL METHOD FOR CURVED CRACKS IN PLANE ELASTICITY

  • Yun, Beong-In
    • Journal of the Korean Mathematical Society
    • /
    • v.39 no.6
    • /
    • pp.913-930
    • /
    • 2002
  • For curved crack problems in plane elasticity, subjected to the traction conditions on the crack faces, we present a system of boundary integral equations. The procedure is based on the indirect boundary integral method in terms of real variables. For efficient mathematical analysis, we decompose the singular kernel into the Cauchy singular part and the regular one. As a result, solvability of the presented system is proved and availability of the present approach is shown by the numerical example of a circular arc crack.

THE RELIABLE MODIFIED OF LAPLACE ADOMIAN DECOMPOSITION METHOD TO SOLVE NONLINEAR INTERVAL VOLTERRA-FREDHOLM INTEGRAL EQUATIONS

  • Hamoud, Ahmed A.;Ghadle, Kirtiwant P.
    • Korean Journal of Mathematics
    • /
    • v.25 no.3
    • /
    • pp.323-334
    • /
    • 2017
  • In this paper, we propose a combined form for solving nonlinear interval Volterra-Fredholm integral equations of the second kind based on the modifying Laplace Adomian decomposition method. We find the exact solutions of nonlinear interval Volterra-Fredholm integral equations with less computation as compared with standard decomposition method. Finally, an illustrative example has been solved to show the efficiency of the proposed method.

ON THE NUMERICAL SOLUTIONS OF INTEGRAL EQUATION OF MIXED TYPE

  • Abdou, Mohamed A.;Mohamed, Khamis I.
    • Journal of applied mathematics & informatics
    • /
    • v.12 no.1_2
    • /
    • pp.165-182
    • /
    • 2003
  • Toeplitz matrix method and the product Nystrom method are described for mixed Fredholm-Volterra singular integral equation of the second kind with Carleman Kernel and logarithmic kernel. The results are compared with the exact solution of the integral equation. The error of each method is calculated.