• 제목/요약/키워드: INS/GNSS

검색결과 41건 처리시간 0.018초

Implementation of Vehicle Navigation System using GNSS, INS, Odometer and Barometer

  • Park, Jungi;Lee, DongSun;Park, Chansik
    • Journal of Positioning, Navigation, and Timing
    • /
    • 제4권3호
    • /
    • pp.141-150
    • /
    • 2015
  • In this study, a Global Navigation Satellite System (GNSS) / Inertial Navigation System (INS) / odometer / barometer integrated navigation system that uses a commercial navigation device including Micro Electro Mechanical Systems (MEMS) accelerometer and gyroscope in addition to GNSS, odometer information obtained from a vehicle, and a separate MEMS barometer sensor was implemented, and the performance was verified. In the case of GNSS and GNSS/INS integrated navigation system that are generally used in a navigation device, the performance would deteriorate in areas where GNSS signals are not available. Therefore, an integrated navigation system that calculates a better navigation solution in areas where GNSS signals are not available compared to general GNSS/INS by correcting the velocity error of GNSS/INS using an odometer and by correcting the cumulative altitude error of GNSS/INS using a barometer was suggested. To verify the performance of the navigation system, a commercial navigation device (Softman, Hyundai Mnsoft, http://www.hyundai-mnsoft.com) and a barometer sensor (ST Company) were installed at a vehicle, and an actual driving test was performed. To examine the performance of the algorithm, the navigation solutions of general GNSS/INS and the GNSS/INS/odometer/barometer integrated navigation system were compared in an area where GNSS signals are not available. As a result, a navigation solution that has a smaller position error than that of GNSS/INS could be obtained in the area where GNSS signals are not available.

GNSS/INS 통합항법 시스템을 위한 범용 PC와 Off-The-Shelf 인터페이스 보드를 이용한 시뮬레이터 설계 (Simulator Design Using a General Purpose PC and Off-The-Shelf Interface Boards for GNSS/INS Integrated Navigation System)

  • 손재훈;오상헌;황동환
    • Journal of Positioning, Navigation, and Timing
    • /
    • 제13권1호
    • /
    • pp.93-102
    • /
    • 2024
  • Global Navigation Satellite System (GNSS)/Inertial Navigation System (INS) integrated navigation systems provide highly accurate and reliable navigation solutions and are widely used as civil and military navigation systems. In order to facilitate the GNSS/INS integrated navigation system development task, a simulator can be used to provide inputs for the GNSS/INS integrated navigation system. In this paper, a simulator design using general-purpose Personal Computer (PC) and Off-The-Shelf (OTS) interface boards for a GNSS/INS integrated navigation system is proposed and implementation results are presented. Requirements of the GNSS/INS integrated navigation system simulator are presented and a design method that satisfies the requirements is described. In order to show the usefulness of the proposed design method, a simulator using a general-purpose PC and OTS interface boards for the GPS/INS integrated navigation system are implemented and verified. The implementation results show that the simulator designed by the proposed method generates the GPS L1 C/A signal and IMU data without any problems.

기압고도계 오차 보상을 고려한 INS/GNSS/TRN 통합항법 설계 (Design of INS/GNSS/TRN Integrated Navigation Considering Compensation of Barometer Error)

  • 이정신;성창기;박병수;이형섭
    • 한국군사과학기술학회지
    • /
    • 제22권2호
    • /
    • pp.197-206
    • /
    • 2019
  • Safe aircraft requires highly reliable navigation information. The traditionally used inertial navigation system (INS) often displays faulty location information due to its innate errors. To overcome this, the INS/GNSS or INS/TRN integrated navigation can be used. However, GNSS is vulnerable to jamming and spoofing, while TRN can be degraded in the flat and repetitive terrains. In this paper, to improve the performance and ensure the high reliability of the navigation system, the INS/GNSS/TRN integrated navigation based on federated filter is designed. Master filter of the integrated navigation uses the estimates and covariances of two local filters - INS/GNSS and INS/TRN integrated filters. The local filters are designed with the EKF that is feedforward type and composed of the 17st state variables. And the INS/GNSS integrated navigation includes the barometer error compensation method. Finally, the proposed INS/GNSS/TRN integrated navigation is verified by vehicle and captive flight tests.

Kalman Filter 복수 적용을 통한 Backprojection 기반 FMCW-SAR의 영상복원 품질평가 (Assessment of Backprojection-based FMCW-SAR Image Restoration by Multiple Implementation of Kalman Filter)

  • 송주영;김덕진;황지환;안상호;김준우
    • 대한원격탐사학회지
    • /
    • 제37권5_3호
    • /
    • pp.1349-1359
    • /
    • 2021
  • SAR SLC 영상을 취득하기 위해 원시 자료로부터 BPA 기반 영상복원을 수행할 때 정확한 GNSS-INS 센서의 위치 및 속도 정보를 획득하는 것은 중요하다. BPA 기반 영상복원을 수행한 연구에서 기기 오차 보정을 위해 Kalman Filter를 적용하였으나, 대부분 1회 적용하여 효과적으로 오차를 제거하였는지 판단하기 어렵다. 본 연구에서는 GNSS-INS 센서의 위치 및 속도 정보에 Kalman Filter를 복수회 적용한 뒤 BPA를 이용하여 영상복원을 수행하여 기기 오차 보정에 효과적인 필터링 횟수를 평가하고자 하였다. 이를 위해 2회의 항공기 실험을 진행하여 SAR 원시 자료를 취득하였고, 이들에 해당하는 GNSS-INS 센서 정보에 대해 실질적이고 연속적으로 Kalman Filter를 적용하였다. 본 연구를 통해 상이한 이동 경로를 가지는 GNSS-INS 정보가 상응하는 FMCW-SAR 영상의 BPA 기반 최적 영상복원에 필요한 Kalman Filter 적용 횟수에 영향을 미칠 수 있다는 것을 확인하였다.

피치각 변화가 큰 궤적에서의 INS/GNSS 통합항법 시스템 가관측성 분석 (Observability Analysis of INS/GNSS System for Vehicles Moving with a Large Pitch Angle Change)

  • 김현석;백승준;김형수;조민수
    • 한국항행학회논문지
    • /
    • 제22권3호
    • /
    • pp.220-227
    • /
    • 2018
  • INS/GNSS 결합시스템을 구성하기 위해서 일반적으로 널리 사용되는 방법이 칼만필터를 이용한 통합항법 시스템을 구성하는 것이다. 하지만, 궤적에 따라 칼만필터의 상태변수들 중에서 가관측하지 않은 상태변수가 발생할 수도 있으며, 이 경우 해당 상태 변수들은 오차가 추정되지 않는다. 이런 문제를 해결하기 위해서는 일반적으로 통합항법 시스템을 구성한 이후에 가관측성 분석을 수행한다. 본 논문에서는 피치각 변화가 큰 궤적으로 움직이는 항체의 INS/GNSS 통합항법 시스템을 설계하기 위해서 24차의 위치 정합 칼만필터를 정의하였다. 설계에 적용된 오차 상태 변수들의 적절성을 검증하기 위해서 가관측성 분석을 수행하였다. 궤적을 5개의 segment로 구분하고 각 구간에서는 PWCS로 가정하여 가관측성을 해석적으로 분석했으며, 그 결과를 시뮬레이션을 통해서 검증하였다. 가관측성 해석 결과 및 시뮬레이션 결과를 통해서 칼만필터의 오차 상태 변수가 가관측하도록 잘 설계되었음을 확인 하였다.

INS/GNSS/NHC Integrated Navigation System Compensating for Lever Arm Effect between NHC Effective Point and IMU Mounting Location

  • Chae, Myeong Seok;Kwon, Jae Uk;Cho, Eui Yeon;Cho, Seong Yun
    • Journal of Positioning, Navigation, and Timing
    • /
    • 제11권3호
    • /
    • pp.199-208
    • /
    • 2022
  • Inertial Navigation System (INS)/Global Navigation Satellite System (GNSS) integrated navigation system can be used for land vehicle navigation. When the GNSS signal is blocked in a dense urban area or tunnel, however, the problem of increasing the error over time is unavoidable because navigation must be performed only with the INS. In this paper, Non-Holonomic Constraints (NHC) information is utilized to solve this problem. The NHC may correct some of the errors of the INS. However, it should be noted that NHC information is not applicable to all areas within the vehicle. In other words, the lever arm effect occurs according to the distance between the Inertial Measurement Unit (IMU) mounting position and the NHC effective point, which causes the NHC condition not to be satisfied at the IMU mounting position. In this paper, an INS/GNSS/NHC integrated navigation filter is designed, and this filter has a function to compensate for the lever arm effect. Therefore, NHC information can be safely used regardless of the vehicle's driving environment. The performance of the proposed technology is verified through Monte-Carlo simulation, and the performance is confirmed through experimental test.

Software Library Design for GNSS/INS Integrated Navigation Based on Multi-Sensor Information of Android Smartphone

  • Kim, Youngki;Fang, Tae Hyun;Seo, Kiyeol
    • Journal of Positioning, Navigation, and Timing
    • /
    • 제11권4호
    • /
    • pp.279-286
    • /
    • 2022
  • In this paper, we designed a software library that produces integrated Global Navigation Satellite System (GNSS) / Inertial Navigation System (INS) navigation information using the raw measurements provided by the GNSS chipset, gyroscope, accelerometer and magnetometer embedded in android smartphone. Loosely coupled integration method was used to derive information of GNSS /INS integrated navigation. An application built in the designed library was developed and installed on the android smartphone. And we conducted field experiments. GNSS navigation messages were collected in the Radio Technical Commission for Maritime Service (RTCM 3.0) format by the Network Transport of RTCM via Internet Protocol (NTRIP). As a result of experiments, it was confirmed that design requirements were satisfied by deriving navigation such as three-dimensional position and speed, course over ground (COG), speed over ground (SOG), heading and protection level (PL) using the designed library. In addition, the results of this experiment are expected to be applicable to maritime navigation applications using smart device.

GNSS 부분 음영 지역에서 마할라노비스 거리를 이용한 GNSS/다중 IMU 센서 기반 측위 알고리즘 (GNSS/Multiple IMUs Based Navigation Strategy Using the Mahalanobis Distance in Partially GNSS-denied Environments)

  • 김지연;송무근;김재훈;이동익
    • 대한임베디드공학회논문지
    • /
    • 제17권4호
    • /
    • pp.239-247
    • /
    • 2022
  • The existing studies on the localization in the GNSS (Global Navigation Satellite System) denied environment usually exploit low-cost MEMS IMU (Micro Electro Mechanical Systems Inertial Measurement Unit) sensors to replace the GNSS signals. However, the navigation system still requires GNSS signals for the normal environment. This paper presents an integrated GNSS/INS (Inertial Navigation System) navigation system which combines GNSS and multiple IMU sensors using extended Kalman filter in partially GNSS-denied environments. The position and velocity of the INS and GNSS are used as the inputs to the integrated navigation system. The Mahalanobis distance is used for novelty detection to detect the outlier of GNSS measurements. When the abnormality is detected in GNSS signals, GNSS data is excluded from the fusion process. The performance of the proposed method is evaluated using MATLAB/Simulink. The simulation results show that the proposed algorithm can achieve a higher degree of positioning accuracy in the partially GNSS-denied environment.

A New GPS Receiver Correlator for the Deeply Coupled GPS/INS Integration System

  • Kim, Jeong-Won;Hwang, Dong-Hwan;Lee, Sang-Jeong
    • 한국항해항만학회:학술대회논문집
    • /
    • 한국항해항만학회 2006년도 International Symposium on GPS/GNSS Vol.1
    • /
    • pp.121-125
    • /
    • 2006
  • A new GPS receiver correlator for the deeply-coupled GPS/INS integration system is proposed in order to the computation time problem of the Kalman filter. The proposed correlator consists of two early, prompt and late arm pairs. One pair is for detecting data bit transition boundary and another is for the correlator value calculation between input and replica signal. By detecting the data bit transition boundary, the measurement calculation time can be made longer than data bit period. As a result of this, the computational time problem of the integrated Kalman filter can be resolved. The validity of the proposed method is given through computer simulations.

  • PDF

Effect of Vibration Suppression Device for GNSS/INS Integrated Navigation System Mounted on Self-Driving Vehicle

  • Park, Dong-Hyuk;Ahn, Sang-Hoon;Won, Jong-Hoon
    • Journal of Positioning, Navigation, and Timing
    • /
    • 제11권2호
    • /
    • pp.119-126
    • /
    • 2022
  • This paper presents a method to reduce the vibration-induced noise effect of an inertial measurement device mounted on a self-driving vehicle. The inertial sensor used in the GNSS/INS integrated navigation system of a self-driving vehicle is fixed directly on the chassis of vehicle body so that its navigation output is affected by the vibration of the vehicle's engine, resulting in the degradation of the navigational performance. Therefore, these effects must be considered when mounting the inertial sensor. In order to solve this problem, this paper proposes to use an in-house manufactured vibration suppression device and analyzes its impact on reducing the vibration effect. Experimental test results in a static scenario show that the vibration-induced noise effect is more clearly observed in the lateral direction of the vehicle, but can be effectively suppressed by using the proposed vibration suppression device compared to the case without it. In addition, the dynamic positioning test scenario shows the position, speed, and posture errors are reduced to 74%, 67%, and 14% levels, respectively.