• Title/Summary/Keyword: INPUT IMPEDANCE

Search Result 652, Processing Time 0.028 seconds

Full-Wave Calculation of the Complex Input Impedance of Microstrip Line Used for Magnetostatic Surface Wave Transducers (정자표면파 트랜스듀서용 마이크로스트립 선로의 복소 입력 임피던스 Full-Wave 계산)

  • 이재현
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.15 no.4
    • /
    • pp.345-352
    • /
    • 2004
  • The radiation impedance of a magnetostatic surface wave excited in a microstrip line haying ferrite film and its dependence on the width of the microstrip line and the height of the ferrite film are calculated by the full-wave moment analysis. The radiation resistance calculated by the full-wave analysis closely agrees with the measured radiation resistance, while that by the magnetostatic approximation greatly differs from the measured result in the higher-frequency region.

Oscillation Frequency Detecting Technique for Transmission Line Protection using Prony's Analysis (프로니해석법을 이용한 공진 주파수 검출 알고리즘)

  • Cho, Kyung-Rae;Kim, Soong-Soo;Park, Jong-Koun;Hong, Jun-Hee
    • Proceedings of the KIEE Conference
    • /
    • 1995.07b
    • /
    • pp.509-512
    • /
    • 1995
  • The relaying algorithm to calculate the fault distance from only transient signal at faults in T/L is presented. In this paper. At faults the oscillation frequency components exist in both voltage and current and these components minimize the input impedance shown in fault point. The equivalent source impedance shown in relaying point is needed to calculate the fault distance using these components. To source impedance, the reflection coefficient between forward wave and backward and the Prony's analysis is also employed to extract the oscillation frequency component from transient signals. The case study show that the new distance relaying algorithm satisfies the high operation speed and high accuracy even if the algorithm uses only transient signals.

  • PDF

Neutral-point Potential Balancing Method for Switched-Inductor Z-Source Three-level Inverter

  • Wang, Xiaogang;Zhang, Jie
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.3
    • /
    • pp.1203-1210
    • /
    • 2017
  • Switched-inductor (SL) Z-source three-level inverter is a novel high power topology. The SL based impedance network can boost the input dc voltage to a higher value than the single LC impedance network. However, as all the neutral-point-clamped (NPC) inverters, the SL Z-source three-level inverter has to balance the neutral-point (NP) potential too. The principle of the inverter is introduced and then the effects of NP potential unbalance are analyzed. A NP balancing method is proposed. Other than the methods for conventional NPC inverter without Z-source impedance network, the upper and lower shoot-through durations are corrected by the feedforward compensation factors. With the proposed method, the NP potential is balanced and the voltage boosting ability of the Z-source network is not affected obviously. Simulations are conducted to verify the proposed method.

Impulse Characteristics of Grounding Systems for Distribution Concrete Pole (배전용 전주의 접지 시스템에 대한 임펄스 특성)

  • Lee, B.H.;Jung, H.U.;Lee, S.B.;Lee, T.H.;Beak, Y.H.;Lee, K.S.;Ahn, C.H.
    • Proceedings of the KIEE Conference
    • /
    • 2005.07c
    • /
    • pp.2286-2288
    • /
    • 2005
  • This paper describes impulse grounding impedance and touch voltage when impulse current is injected to grounding systems for distribution concrete pole. Impulse grounding impedance is a significant factor in analyzing transient grounding impedance. The touch voltage is measured in four directions. The maximum touch voltage was 520V and the minimum touch voltage was 47.3V when the input current was 100A.

  • PDF

Development of Motion Generator Based on Implementation of Active Impedance (능동 임피던스의 구현에 기초한 운동 발생기의 개발)

  • 이세한;송재복;김용일
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.15 no.7
    • /
    • pp.160-166
    • /
    • 1998
  • In this research a 2-dimensional motion generator composed of two linear motors was developed. The inertia, damping and/or stiffness characteristics of the motion generator can be changed on the real-time basis by properly regulating the force generated by the linear motors. That is, active impedance is implemented without actual change in the physical structure of the motion generator. Control of the motor force is carried out by controlling the input currents supplied to the linear motors based on the combination of the PI controller and feedforward controller. This motion generator can be used to measure a kinesthetic sense associated with the human arm and thus to develop the products for which the kinesthetic sense is taken into account.

  • PDF

Robust Impedance Control of High-DOF Robot Based on Disturbance Observer Considering Residual Disturbance (잔여외란을 고려한 외란관측기 기반 고자유도 로봇의 강인 임피던스제어)

  • Kim, Junhyuk;Park, Seungkyu;Yoon, Taesung
    • The Journal of Korea Robotics Society
    • /
    • v.16 no.1
    • /
    • pp.72-78
    • /
    • 2021
  • This paper presents a robust impedance control of high-DOF robot based on disturbance observer(DOB). A novel DOB is derived by considering the residual disturbance caused by the difference between actual disturbance and disturbance decoupling input which utilizes the estimated disturbance. It focuses on the elimination of the residual disturbance and improvement of the control performance as well as the good estimation of disturbances. In the control of high-DOF robot, numerical dynamic model, which is conducted by a software based on dynamics, is utilized because the analytical model of high-DOF robot is difficult to be obtained. The simulation of high-DOF robot with numerical dynamic model is provided to verify the performance of the proposed controller.

A Low-Noise High Performance Amplifier for Low Input Signals (저입력신호를 위한 저잡음 고성능 증폭기)

  • 이대영
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.9 no.4
    • /
    • pp.17-24
    • /
    • 1972
  • A simply constructed and inexpensive amplifier that exhibits unusually low noise is studied. The high-performance differential amplifier combines high input impedence, adjustable gain, low in put noise and low output impedance. The amplifier is particularly useful in applications which call for large amplificaions of very low level signals.

  • PDF

A offset compensated class A bipolar current conveyor(CCII) (오프셋 보상된 A급 바이폴라 전류 콘베이어(CCII))

  • 이주찬;박희종;이장혁;차형우;정원섭
    • Proceedings of the IEEK Conference
    • /
    • 1999.11a
    • /
    • pp.971-974
    • /
    • 1999
  • A offset compensated class A bipolar second-generation current conveyor (CCII) for high-accuracy current-mode signal processing was proposed. The CCII adopts two diode-connection transistor between voltage input and voltage output to reduce offset voltage. Experiments show that the proposed CCII has offset voltage of 0.05 ㎷, input impedance of 2 Ω and the 3-㏈ cutoff frequency of 30 MHz when used a voltage amplifier. The power dissipation is 6 ㎷.

  • PDF

Implementation of a Labview Based Time-Frequency Domain Reflectometry Real Time System for the Load Impedance Measurement (부하 임피던스 측정을 위한 랩뷰기반 시간-주파수 영역 반사파 실시간 시스템 구현)

  • Park, Tae-Geun;Kwak, Ki-Seok;Park, Jin-Bae;Yoon, Tae-Sung
    • Proceedings of the KIEE Conference
    • /
    • 2006.07d
    • /
    • pp.1803-1804
    • /
    • 2006
  • The purpose of this paper is to implement a Labview based TFDR Real Time system through the instruments of Pci eXtensions for Instrumentation(PXI). The proposed load impedance measurement algorithm was verified by experiments via the implemented real time system. The TFDR real time system consisted of the reference signal design, signal generation, signal acquisition, algorithm execution and results display parts. To implement real time system, all of the parts wore programmed by the Labview which is one of graphical programming languages. In the application software implemented by the Labview we were able to design a suitable reference signal according to the length and frequency attenuation characteristics of the target cable and controled the arbitrary waveform generator(ZT500PXI) of the signal generation part and the digital storage oscilloscope(ZT430PXI) of the signal acquisition part. By using the TFDR real time system with the terminal resistor on the target cable, we applied to the load impedance measurements. In the proposed load impedance algorithm a normalized time-frequency cross correlation function and a cross time-frequency distribution function was employed to calculate the reflection coefficient and phase difference between the input and the reflected signals.

  • PDF

A study on the on-load torque measurement for three phase induction motor (삼상유도전동기의 부하시 토오크 측정에 관한 연구)

  • 이승원;김은배;황석영;강석윤
    • 전기의세계
    • /
    • v.30 no.11
    • /
    • pp.734-746
    • /
    • 1981
  • This paper suggests on-load torque measurement for 3 phase induction motors by input -voltage and current utilizing symmetric coordinate analysis technique on the basis of the induction motor equivalent circuit. In this paper, two cases are treated with, i.e, one is the case where the motors' exciting current and primary leakage impedance voltage drop are compensated automatically, adopting the ideal wattmeter whose current coil impedance and voltage coil impedance are 0 and .inf. respectively, and the other is the case where non-ideal wattmeter is adopted and the compensation above is made by computation. As a result of the case study, following conclusions are obtained. 1) By proper combination of the error propagation law and the limit of power consumption, the desirable overall measurement error of the apparatus can be obtained on the basis of the inherent errors of CT and PT. 2) The measurement error is larger in current simulation circuit than in voltage simulation circuit. 3) Between the two cases, the latter is more advantageous than the former from the viewpoint of feasibility and the measurement error. 4) As the attachment of Ammeter in the current simulation circuit influences the measurement error considerably, its internal impedance should be large considerably. 5) The larger the consumption power of the apparatus is, the easier the feasibility is.

  • PDF