• 제목/요약/키워드: IGF-I gene

검색결과 81건 처리시간 0.019초

C2C12 myotube에서 insulin-like growth factor-I이 plectin과 MACF1 발현에 미치는 영향 (Insulin-like Growth Factor-I Induces Plectin and MACF1 Expression in C2C12 Myotubes)

  • 김혜진;황지선;곽이섭;이원준
    • 생명과학회지
    • /
    • 제22권12호
    • /
    • pp.1651-1657
    • /
    • 2012
  • 본 연구에서는 C2C12 근육 세포에서 IGF-I이 세포골격 연결 단백질인 plectin과 MACF1 유전자 발현에 미치는 영향에 대해 알아보았다. 그 결과 IGF-I이 plectin 유전자의 단백질과 mRNA 발현을 증가시켰으며, MACF1 mRNA 발현을 증가시켰음을 알 수 있었다. 이는 운동에 의해 근육에서 분비가 증가하는 IGF-I이 근육 관련 유전자들의 발현을 조절하여 근부피 유지에 영향을 미친다는 기존의 연구 결과들에서 더 나아가 골격근 구조 안정화 및 근수축 기전에 기여하는 plectin과 MACF1 유전자 발현에도 영향을 미친다는 사실을 증명하였다는데 의의가 있다고 사료된다. 향후 근수축 기전에 있어, 운동 형태, 근섬유의 종류에 따른 세포 골격 단백질의 역할 규명 및 조절자에 관한 연구가 더 수행된다면 운동이 골격근의 생리적 변화에 미치는 영향에 대한 추가적 정보를 제공할 수 있을 것이다.

C2C12 골격근 세포에서 FAT/CD36 발현 조절에 있어 Insulin-like growth factor-I이 미치는 영향 (Insulin-like Growth Factor-I Regulates the FAT/CD36 Expression in C2C12 Skeletal Muscle Cells)

  • 김혜진;윤혜민;김태영;이원준
    • 생명과학회지
    • /
    • 제26권7호
    • /
    • pp.758-763
    • /
    • 2016
  • 본 연구에서는 C2C12 근육 세포의 분화 과정에 있어 IGF-I이 지방산의 수송을 담당하는 지방산 수송체인 FAT/CD36의 mRNA 및 단백질 발현에 미치는 영향에 대해 알아보았다. 그 결과 근육세포의 분화 과정에 있어 FAT/CD36의 단백질과 mRNA 발현이 분화 시간 의존적으로 유의하게 증가하였으며, IGF-I의 처리에 의해서도 유의하게 조절되었음을 알 수 있었다. 이는 IGF-I이 골격근 세포의 성장 및 분화를 촉진하여 근육 관련 유전자들의 발현을 조절하는 기능뿐만 아니라, 골격근의 주요 에너지원으로 사용되는 지방산의 수송을 담당하는 FAT/CD36의 발현에도 영향을 미친다는 것으로 해석할 수 있겠다. 향후 IGF-I이 골격근 세포에서 FAT/CD36의 발현에 영향을 미침으로써 골격근의 지방산 흡수와 산화율을 조절하는지, 그에 따라 지방대사에 어떠한 영향을 미치는지에 대한 연구가 필요할 것이며, 이와 관련된 신호전달 체계 및 기전에 대한 연구도 진행 되어야 할 것이다.

Cloning and Characterization of cDNA for Korean Rockfish (Sebastes schlegeli ) Insulin-like Growth Factor-I

  • Kwon, Mi-Jin;Jo, Jae-Yoon;Nam, Taek-Jeong
    • 한국해양바이오학회지
    • /
    • 제1권2호
    • /
    • pp.119-125
    • /
    • 2006
  • 어류의 insulin-like growth factor-I (IGF-I)의 생화학적 작용기작을 연구하기 위하여 한국산 조피볼락의 IGF-I cDNA 유전자 cloning을 행하였다. 완전한 cDNA 유전자 염기서열은 PCR과 RACE 방법을 통하여 얻어진 DNA로부터 결과를 얻을수 있었다. 결정된 IGF-I의 염기서열은 flounder, chinook salmon, human IGF-I의 염기서열과 비교한 결과 각각 93.6%, 90.7%, 85.4%의 높은 상동성을 보였다. 생화학적으로 활성이 있는 재조합 IGF-I을 얻기 위하여 IGF-I의 B-C-A-D domain 부분을 PCR로 얻은 뒤 E. coli BL21(DE3)에 넣어 overexpression 시켰다. Ni-NTA colummn을 사용하여 순수한 재조합 단백질을 정제할수 있었다. 정제된 단백질은 SDS-PAGE 상에서 7 kDa의 단일 band를 보여 주었으며 [$^3H$]-thymidine 결합정도를 측정하는 방법으로 활성을 가지고 있음을 확인할수 있었다.

  • PDF

Association of growth hormone and insulin-like growth factor I genotype with body weight, dominance of body weight, and mRNA expression in Korat slow-growing chickens

  • Sinpru, Panpradub;Bunnom, Rujjira;Poompramun, Chotima;Kaewsatuan, Pramin;Sornsan, Sirangkun;Kubota, Satoshi;Molee, Wittawat;Molee, Amonrat
    • Animal Bioscience
    • /
    • 제34권12호
    • /
    • pp.1886-1894
    • /
    • 2021
  • Objective: Growth hormone (GH) and insulin-like growth factor I (IGF-I) play a critical role in animal growth rates. We aimed to investigate the effect of GH and IGF-I genotypes on body weight (BW), dominance, and gene expression in slow-growing chickens at different ages. Methods: A total of 613 Korat chickens (KRs) were bred and divided into three groups by genotype - A1A1, A1A3, and A3A3 for GH and AA, AC, and CC for IGF-I. Chickens were weighed every two weeks, and liver and breast muscle tissues were collected at 10 weeks of age. Genetic parameters of KRs were estimated using ASReml software. The GH and IGF-I mRNA levels were measured by quantitative polymerase chain reaction. Significant differences between traits were analyzed using the generalized linear model. Results: A significant effect of GH genotypes on BW was found at most ages, and the A1A1 genotype had the highest value of BW. Compared with the A3A3 genotype, the A1A1 and A1A3 genotypes showed a higher dominance effect at 0 and 2 weeks, and genotype A1A1 had the highest value of dominance at 8 weeks of age. A difference in GH mRNA levels between genotypes was detected in breast muscle at 6 weeks and in the liver tissue at 2 weeks. In the case of IGF-I gene, the AA genotype had the highest BW at the beginning of life. Significant differences in BW dominance were found at 2 weeks. However, IGF-I mRNA levels were not different among genotypes in both breast muscles and liver tissues. Conclusion: Our results revealed that GH and IGF-I influence growth, but may not be involved in heterosis. GH can be used as a marker gene in selection programs for growth because the homozygous genotype (A1A1) had the highest BW at all ages. The IGF-I is not a useful marker gene for selection programs.

Association of Chicken Growth Hormones and Insulin-like Growth Factor Gene Polymorphisms with Growth Performance and Carcass Traits in Thai Broilers

  • Nguyen, Thi Lan Anh;Kunhareang, Sajee;Duangjinda, Monchai
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제28권12호
    • /
    • pp.1686-1695
    • /
    • 2015
  • Molecular marker selection has been an acceptable tool in the acceleration of the genetic response of desired traits to improve production performance in chickens. The crossbreds from commercial parent stock (PS) broilers with four Thai synthetic breeds; Kaen Thong (KT), Khai Mook Esarn (KM), Soi Nin (SN), and Soi Pet (SP) were used to study the association among chicken growth hormones (cGH) and the insulin-like growth factor (IGF-I) genes for growth and carcass traits; for the purpose of developing a suitable terminal breeding program for Thai broilers. A total of 408 chickens of four Thai broiler lines were genotyped, using polymerase chain reaction-restriction fragment length polymorphism methods. The cGH gene was significantly associated with body weight at hatching; at 4, 6, 8, 10 weeks of age and with average daily gain (ADG); during 2 to 4, 4 to 6, 0 to 6, 0 to 8, and 0 to 10 weeks of age in $PS{\times}KM$ chickens. For $PS{\times}KT$ populations, cGH gene showed significant association with body weight at hatching, and ADG; during 8 to 10 weeks of age. The single nucleotide polymorphism variant confirmed that allele G has positive effects for body weight and ADG. Within carcass traits, cGH revealed a tentative association within the dressing percentage. For the IGF-I gene polymorphism, there were significant associations with body weight at hatching; at 2, 4, and 6 weeks of age and ADG; during 0 to 2, 4 to 6, and 0 to 6 weeks of age; in all of four Thai broiler populations. There were tentative associations of the IGF-I gene within the percentages of breast muscles and wings. Thus, cGH gene may be used as a candidate gene, to improve growth traits of Thai broilers.

Effects of Castration on Androgen Receptor, IGF-I Ea, MGF and Myostatin Gene Expression in Skeletal Muscles of Male Pigs

  • Yao, Yuchang;Cai, Zhaowei;Zhang, Lifan;Zhao, Chunjiang;Wu, Keliang;Xu, Ningying;Liu, Gang;Wu, Changxin
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제22권8호
    • /
    • pp.1069-1077
    • /
    • 2009
  • Castration of male pig produces significant negative effects on skeletal muscle development. The androgen receptor (AR), two splice variants of insulin-like growth factor-I (IGF-I Ea and MGF) and the myostatin gene may play important roles in this process. In the present study, the expression of AR, IGF-I Ea, MGF and myostatin genes in three skeletal muscles, the brachialis, longissimus and semitendinosus, were studied using real-time quantitative RT-PCR. Our experimental design used 14 pairs of male Landrace sire${\times}$Yorkshire dam piglets. The two piglets in each pair were full sibs, one of which was castrated at 21 d of age; the other remained intact. The study group was divided into subgroups of equal size. Animals in the first subgroup were slaughtered at 147 d and those of the second at 210 d of age. Carcass weight and lean meat yield were similar between boars and barrows at 147 d of age (p>0.05), whereas barrows had lower carcass weight and less lean meat yield at 210 d of age (p<0.05). Castration caused down-regulation of AR gene expression at both 147 and 210 d of age (p<0.05). The two splice variants of the IGF-I gene from porcine skeletal muscle were cloned using RT-PCR, and it was found that MGF differs from IGF-I Ea in having a 52-base insert in the last coding exon of the mRNA. Both splice variants were down-regulated by castration only at 210 d of age (p<0.05). No differences in expression of the myostatin gene were observed between boars and barrows at either 147 or 210 d of age (p>0.05). These results suggest that the downregulation of AR, IGF-I Ea and MGF gene expression following castration helps to explain the negative effect of castration on skeletal muscle development.

Allelic Characterization of IGF2 and H19 Gene Polymorphisms in Molar Tissues

  • Piyamongkol, Wirawit;Suprasert, Prapaporn
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제17권9호
    • /
    • pp.4405-4408
    • /
    • 2016
  • Background: To investigate the characteristics of allelic distribution of IGF2 and H19 gene polymorphisms in molar tissues compared to normal placentas. Materials and Methods: Forty-nine specimens of molar tissues as well as 100 control normal placental tissues, delivered on the same days, were collected. Polymerase chain reaction (PCR) with restriction fragment length polymorphism (RFLP) on 2% agarose gel electrophoresis was conducted to determine the allelic distribution. The ApaI polymorphism within exon 9 of IGF2 and the RsaI polymorphism within exon 5 of H19 were employed to identify the allelic distribution of the IGF2 and H19 genes, respectively. Then the data for these genes in the molar and normal placenta tissues were compared. Results: The allelic distribution of IGF2 genes found in molar tissue were 21 (42.9%) aa (undigested), 10 (20.4%) ab (heterozygous) and 18 (36.7%) bb (digested), while in normal placenta tissue the values were 22 (22%) aa, 51 (51%) ab, and 27 (27%) bb. The allelic distribution of H19 in molar tissues was 8 (16.2%) aa (undigested), 8 (16.3%) ab (heterozygous) and 33 (67.4%) bb (digested) and in normal placental tissue was 16 (16%) aa, 36 (36%) ab and 48 (48%) bb in normal placenta tissue. These results were significantly different with P values of 0.001 and 0.037 for the allelic distribution of IGF2 and H19, respectively. Conclusions: Molar tissues showed significant differences of allelic distribution of IGF2 and H19 from normal placenta tissues.

Effects of Dietary Betaine on the Secretion of Insulin-like Growth Factor-I and Insulin-like Growth Factor Binding Protein-1 and -3 in Laying Hens

  • Choe, H.S.;Li, H.L.;Park, J.H.;Kang, C.W.;Ryu, Kyeong Seon
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제23권3호
    • /
    • pp.379-384
    • /
    • 2010
  • The principal objective of this experiment was to determine the effects of dietary betaine on IGF-I, IGFBP-3 and IGFBP-1 secretion and IGF-I mRNA gene expression in the serum and liver of laying hens. A total of 72 ISA-Brown laying hens were fed with four different levels of betaine (0, 300, 600, 1,200 ppm) based on a corn-soybean meal diet containing 2,800 kcal/kg of metabolizable energy (ME) and 16% crude protein (CP) for four weeks. The results indicated significantly higher serum and liver IGF-I concentrations in the laying hens fed with 600 and 1,200 ppm betaine (p<0.05) compared to controls. IGF-I gene expression in liver showed a statistically correlated increase in 600 and 1,200 ppm betaine-fed groups as compared to the controls (p<0.05). Serum IGFBP-3 concentrations were elevated significantly in the groups fed 600 ppm of betaine. However, the secretion of IGFBP-1 in the liver of laying hens fed on 600 and 1,200 ppm of betaine was significantly lower than in the controls (p<0.05). The results of this experiment showed that dietary betaine supplementation plays a pivotal role in changes of the IGFs system in laying hens.

Polymorphism of Insulin-like Growth Factor-I Gene in 13 Pig Breeds and its Relationship with Pig Growth and Carcass Traits

  • Wang, Wenjun;Huang, Lusheng;Chen, Kefei;Gao, Jun;Ren, Jun;Ai, Huashui;Lin, Wanhua
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제15권10호
    • /
    • pp.1391-1394
    • /
    • 2002
  • The polymorphism of insulin-like growth factor-I (IGF-I) in 13 pig breeds (total n=559) was detected by PCR-Hha I- RFLP, and allele A (151 bp and 28 bp) or allele B (116 bp, 35 bp and 28 bp) were observed. In these pig breeds, it was found that European pig breeds carried high frequencies of allele B, while Chinese native pig breeds carried high frequencies of allele A. Meanwhile the role of porcine IGF-I was investigated in 117 Nanchang White pigs and 360 Large Yorkshire pigs. Eight traits about growth and carcass were recorded for analyzing the associations between IGF-I gene polymorphism and performance quantitative traits. In the Nanchang White pigs, those with AA genotype generally had higher birth weight than those with AB genotype (p<0.05), but all these genotypes had no significant effect on the other traits which had been analyzed. In Large Yorkshire pigs, those with BB genotype had higher 2 months and 6 months body weight than those with AA genotype (p<0.05), and had a thicker hind-back-fat thickness and mid-back-thickness than those with AB and BB genotypes (p<0.05). And those with BB genotype were the thinnest in Large Yorkshire. Furthermore, pigs with AA genotype had a lower lean percentage than those with AB and BB genotypes (p<0.01), and the lean percentage of those with BB genotype was the highest. Based on these results, it is possible to make the IGF-I gene locus into the application of marker-assisted selection programmes.

Suppressed Cell Proliferation and Differentiation Following an Over-expression of Myostatin is Associated with Inhibited Expression of Insulin-like Growth Factor II and Myogenin in Rat L6 Myoblasts

  • Jin, Eun-Jung;Kim, Inae;Lee, C. Young;Park, Byung-Chul
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제19권10호
    • /
    • pp.1508-1513
    • /
    • 2006
  • Myostatin (MSTN) and insulin-like growth factors (IGFs) are a known inhibitor and stimulators of proliferation and differentiation of muscle cells, respectively. The present study was performed to investigate the relationship of MSTN-induced growth inhibition to expression of the IGF system components and myogenin, a muscle cell-specific transcription factor, in rat L6 myoblasts. The L6 cells transfected with a green fluorescent protein-MSTN plasmid expression construct had a 47% less cell number than mock-transfected cells after 3-d serum-free culture, accompanied by delayed differentiation which was suggested by inhibited aggregation of cells. Moreover, cells transfected with the expression construct had decreased expression of IGF-II and myogenin genes, but not IGF-I or its receptor genes, as examined by reverse transcription-polymerase chain reaction. The reduced mitosis of the L6 cells transfected with the MSTN-expression construct increased following an addition of either IGF-I or IGF-II to the culture medium, but not to the level of mock-transfected cells. By contrast, myogenin gene expression in these cells increased after the addition of either IGF to the level of mock-transfected cells. Collectively, these results suggest that the inhibitory effect of MSTN on L6 cell proliferation and differentiation is likely to be partly mediated by serially suppressed expression of IGF-II and myogenin genes, not IGF-I gene.