• Title/Summary/Keyword: IGCC 슬래그

Search Result 39, Processing Time 0.026 seconds

Analysis of Slag Behavior near the Slag Tap in an Entrained Flow Coal Gasifier (분류층 석탄가스화기 하부 슬래그 탭 부근의 슬래그 거동 해석)

  • Chung, Jae-Hwa;Chi, Jun-Hwa;Lee, Joong-Won;Seo, Seok-Bin;Kim, Ki-Tae;Park, Ho-Young
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.22 no.6
    • /
    • pp.913-924
    • /
    • 2011
  • A steady-state analysis has been conducted to predict the behavior of the slag layer in the entrained-flow slagging coal gasifier. The analysis takes into consideration the composition dependent slag properties such as density, viscosity, heat capacity, thermal conductivity, and temperature of critical viscosity. The amount of added flux to the design coal and the variation of syngas temperature inside the gasifier have been adopted as calculation parameters. The predicted results are the local thickness of the molten and the solid slag layers, and the slag viscosity and the velocity distribution across the molten slag layer along the gasifier wall near the slag tap.

Entrained-Flow Coal Water Slurry Gasification (분류층 습식 석탄가스화 기술)

  • Ra, HoWon;Lee, SeeHoon;Yoon, SangJun;Choi, YoungChan;Kim, JaeHo;Lee, JaeGoo
    • Korean Chemical Engineering Research
    • /
    • v.48 no.2
    • /
    • pp.129-139
    • /
    • 2010
  • Coal gasification process, which had developed originally to convert coal from hydrogen and carbon monoxide, has used and developed in many countries because of environmental advantages such as carbon dioxide storage, decrease of pollutants and so on. Generally entrained-flow gasification process using pulverized coal under $75{\mu}m$ is used in Integrated Gas Combined Cycle(IGCC) because of easy scale up and high efficiency of energy conversion. Especially entrained-flow gasifers with coal water slurry have been used in many applications due to its fully developed technologies. In this paper, several technologies for coal-water slurry gasification that involves slurry preparation, burner, gasifier, slag melting and numerical simulation for plant design and operation were investigated. Entrained-flow gasification with coal water slurry can be used for synfuel production, SNG, chemicals as well as IGCC. To develop hybrid gasification process and use different types of coal, it is necessary to develop new technologies that will increase efficiency of the process.

A Study on the Coal Gasification Slag as Fine Aggregate for Concrete - Focus on Chemical Properties - (콘크리트용 잔골재로서 석탄가스화복합발전 슬래그의 활용성 검토 - 화학적 특성을 중심으로 -)

  • Hyun, Seong-Yong;Han, Jun-Hui;Lee, Yung-Jun;Shin, Yong-Sub;Han, Min-Cheol;Han, Cheon-Goo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2018.05a
    • /
    • pp.191-192
    • /
    • 2018
  • This study is a fundamental study to utilize CGS from the IGCC as a fine aggregate for concrete. According to the study, the chemical composition of KS F 2527 was reviewed. The results showed that the KS F 2527 standard was generally satisfied, but the content of the sulfur trioxide(SO3) exceeded the limit set by the molten slag. The possibility was found to be a fine metal based on chemicals other than sulfur trioxide(SO3).

  • PDF

A Study on the Coal Gasification Slag as Fine Aggregate for Concrete - Focus on Physical Properties and hazardous materials content characteristics - (콘크리트용 잔골재로서 석탄가스화복합발전 슬래그의 활용성 검토 - 물리적 성질 및 유해물질 함유량 특성을 중심으로 -)

  • Hyun, Seong-Yong;Han, Jun-Hui;Lee, Jae-Jin;Shin, Yong-Sub;Han, Min-Cheol;Han, Cheon-Goo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2018.05a
    • /
    • pp.56-57
    • /
    • 2018
  • This study is a fundamental consideration for using CGS from the IGCC as a fine aggregate for concrete. For the review, the physical properties and hazardous materials content of KS F 2527 were considered. The results showed that KS F 2527 standard was generally satisfied, making it possible to confirm the possibility that it is a fine metal considering its physical properties and hazardous materials content characteristics.

  • PDF

Engineering Properties of Concrete Mock-up Using Coal Gasification Slag as Fine Aggregate. (석탄가스화 발전슬래그를 잔골재로 사용한 콘크리트 Mock-up 부재의 공학적 특성)

  • Han, Jun-Hui;Lee, Young-Jun;Hyun, Seung-Yong;Han, Min-Cheol;Yoon, Ki-Won;Han, Cheon-Goo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2018.11a
    • /
    • pp.159-160
    • /
    • 2018
  • In this study, the characteristics of the Mock-up test were reviewed to analyze the applicability of the coal gasification slag (CGS) from the integrated gasification combination Cycle (IGCC) to the concrete fine aggregate. The analysis shows that CGS and crushed sand mix is the best combination of CGS combined with about 50 % of CGS based on the effects of promoting liquidity and strength. This is expected to be a positive factor in securing the strength and flexibility of concrete given the optimal mix of CGS, and may also contribute to the improvement of quality.

  • PDF

Effect of Using Coal Gasification Slag as Fine Aggregate on Field Applicability of the Concrete through Mock-up Test (Mock up test를 통한 석탄가스화 발전슬래그를 잔골재로 사용한 콘크리트의 현장적용 가능성 분석)

  • Han, Jun Hui;Lee, Young Jun;Hyun, Seung Yong;Han, Min Cheol;Yoon, Ki Won;Han, Cheon Goo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2018.11a
    • /
    • pp.21-22
    • /
    • 2018
  • In this study, the characteristics of the Mock-up test were reviewed to analyze the applicability of the coal gasification slag (CGS) from the integrated gasification combination Cycle (IGCC) to the concrete fine aggregate. The analysis shows that CGS and crushed sand mix is the best combination of CGS combined with about 50 % of CGS based on the effects of promoting liquidity and strength. This is expected to be a positive factor in securing the strength and flexibility of concrete given the optimal mix of CGS, and may also contribute to the improvement of quality.

  • PDF

Reduction of Hydration heat of FA concrete using Coal Gasification Slag for Mixed Fine Aggregate (석탄 가스화 용융 슬래그를 혼합 잔골재로 사용한 FA 치환 콘크리트의 수화열 저감)

  • Han, Jun-Hui;Lee, Young-Jun;Choi, Il-Kyung;Kim, Jung;Han, Min-Cheol;Han, Cheon-Goo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2019.11a
    • /
    • pp.79-80
    • /
    • 2019
  • This study was intended to examine the possibility of reducing hydration heat by FA substitution and combination of slag (CGS) from coal gasification power generation (IGCC) with mixed aggregate for concrete. The analysis results showed good results if liquidity increases as the ratio of CGS increases, air volume decreases, and compressive strength is mixed up to 25% in the residual aggregate. The results showed that the heat of hydration was reduced compared to plain due to the boron content of CGS as the CGS substitution rate increased, but it was larger due to the combination with FA substitution. It was found that the heat of hydration was reduced.

  • PDF

Hydroelectric Sorting Process is coal Gasification Slag Effect on the Quality of fine Aggregates (수력선별 공정이 석탄 가스화 용융 슬래그 잔골재 품질에 미치는 영향)

  • Hu, Yun-Yao;Kim, Su-Hoo;Han, Jun-Hui;Kim, Jung;Han, Min-Cheol;Han, Cheon-Goo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2021.11a
    • /
    • pp.120-121
    • /
    • 2021
  • This study examines the performance of the pre-treatment process system to use CGS, a by-product generated in IGCC, as a concrete fine aggregate for construction materials, on the quality of CGS fine aggregate. As a result of the analysis, it is judged that the quality of fine aggregates of CGS can be improved at both density, absorption rate, and 0.08mm body passage amount after the hydroelectric screening process using water as a medium during the pretreatment process. It is believed that it can be used as basic data for national standard certification of CGS fine aggregates in the future.

  • PDF

Analysis of The Properties of Materials for Utilizing Fine Aggregates for Concrete for Coal Gasification Slag (석탄 가스화 용융 슬래그를 콘크리트용 잔골재로 활용하기 위한 재료 특성 분석)

  • Kim, Su-Hoo;Lim, Gun-Su;Han, Jun-Hui;Hyun, Seung-Yong;Kim, Jung;Han, Min-Cheol
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2021.11a
    • /
    • pp.170-171
    • /
    • 2021
  • This study compared the characteristics of the newly established JISA 5011-5 coal gasification slag fine aggregate with the characteristics of CGS generated in Korean IGCC through microscopic analysis. As a result of the study, similar results to K_CGS and J_CGS were found

  • PDF

The Characteristics of Isothermal Conduction Calorimetry and Specific Heat in Coal Gasification Slag (석탄 가스화 용융 슬래그의 비열 및 미소수화열 특성)

  • Han, Jun-Hui;Hu, Yun-Yao;Lim, Gun-Su;Kim, Su-Hoo;Kim, Jong;Han, Min-Cheol
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2021.11a
    • /
    • pp.182-183
    • /
    • 2021
  • In this study, This is the result of thermal characteristics analysis to suggest an efficient method of using coal gasification slag(CGS) of byproduct from integrated gasification combined cycle(IGCC). In Specific Heat characteristics, CGS and CS showed similar values. Isothermal Conduction Calorimetry showed that the hydration reaction of cement was retarded when CGS was used. Therefore, it is expected that CGS will be used as an efficient alternative to reducing the hydration heat of mass concrete as a functional aggregate combination.

  • PDF