콘크리트용 잔골재로서 석탄가스화복합발전 슬래그의 활용성 검토 - 화학적 특성을 중심으로 -

A Study on the Coal Gasification Slag as Fine Aggregate for Concrete
- Focus on Chemical Properties -

현 승 용* 한 준 회" 이 영 준" 신 용 섭" 한 민 철" 한 천 구""

Hyun, Seong-Yong Han, Jun-Hui Lee, Yung-Jun Shin, Yong-Sub Han, Min-Cheol Han, Cheon-Goo

Abstract

This study is a fundamental study to utilize CGS from the IGCC as a fine aggregate for concrete. According to the study, the chemical composition of KS F 2527 was reviewed. The results showed that the KS F 2527 standard was generally satisfied, but the content of the sulfur trioxide(SO₃) exceeded the limit set by the molten slag. The possibility was found to be a fine metal based on chemicals other than sulfur trioxide(SO₃).

키 워 드 : 잔골재, 석탄가스화복합발전, 석탄가스화복합발전 슬래그

keywords: fien aggregate, integrated gasification combined cycle, coal gasification slag

1. 서 론

최근 미세먼지 및 온살가스의 문제가 대두됨에 따라 대기환경에관한 관심이 증가하고 있다. 국내에서는 석탄화력을 미세먼지의 주요 배출원으로 판단하고 있으며, 노후된 석탄화력의 경우에는 가동을 중단하고 있다. 이에 태안화력발전소에서는 석탄가스화복합발전(IGCC: Integrated Gasification Combined Cycle)이라는 새로운 발전을 도입하였다. IGCC는 기존 석탄화력에 비해 미세먼지를 20% 수준으로 감축할 수 있고, 이황산가스 및 질소산화물도 90~95% 이상 줄일 수 있는 친환경적인 발전방식이다.

그러나 IGCC의 발전 중에는 부산물로 슬래그가 배출되고 있는데, 이를 석탄기스 화복합발전 슬래그(CGS: Coal Gasification Slag)라고 한다. 이렇게 발생된 CGS는 IGCC의 국내 도입이 처음이기 때문에 활용방안이 연구된 바가 거의 없다. 이에 효율적인 활용방안 및 처리방법 모색이 시급한 실정이다.

그러므로 본 연구에서는 IGCC에서 발생되는 슬래그인 CCS를 콘크리트용 잔골재 로써의 활용 가능성을 분석하고자 하는데, 우선 잔골재로써의 화학적 특성을 분석하므로서 그 가능성 여부를 검토하고자 한다.

2. 실험계획 및 방법

2.1 실험계획

본 연구의 실험계획은 표 1과 같다. 먼저 CGS의 경우 태안화력발전소에서 매주 1회 수급해온 6개의 시료를 혼합한 것을 대상으로 KS F 2527을 참고하여 화학적 특성에 대해 분석하고자 한다.

그림 1. CGS의 배출 사진

표 1. 실험 계획

실험요인	실험수준			
CGS의 종류	1	· CGS 6회분을 혼합한 것 ¹⁾		
화학적 특성 (화학성분 함유량)	7	· 산화칼슘(CaO)		
		· 산화마그네슘(MgO)		
		· 황(S)		
		· 삼산화황(SO ₃)		
		· 산화철(FeO)		
		· 금속철(Fe)		
		· 염기도(CaO/SiO ₂)		
	CGS의 종류 화학적 특성 (화학성분	CGS의 종류 1 화학적 특성 (화학성분 7		

1) CGS=Coal Gasification Slag, 태안화력발전소에서 매주 1회 수급

^{*} 청주대학교 건축공학과 석사과정, 교신저자(yc0933@naver.com)

^{**} 청주대학교 건축공학과 석사과정

^{***} 청주대학교 건축공학과 박사과정

^{****} 청주대학교 건축공학과 부교수, 공학박사

^{*****} 청주대학교 건축공학과 교수, 공학박사

2.2 사용재료

표 2는 본 연구에서 사용한 CGS의 물리적 특성, 표 3은 CGS의 유해물질 함유량을 나타낸 것이다.

표 2. CGS의 물리적 특성

밀도 (g/cm³)	흡수율 (%)	안정성 (%)	입형판정실적률 (%)	팽창성 (%)	조립률	
2.70	2.26	3.0	60.37	0	2.95	

3. 실험결과 및 분석

3.1 산화칼슘(CaO)

표 3은 KS F 2527 중 화학성분에 대한 규격과 CGS의 화학적 성질을 나타낸 것이다. 먼저 산화칼슘(CaO)의 경우, 용융슬래그는 45.0 % 이히로 규정되어 있는데. CGS의 경우 13.1 %로 양호한 수치를 나타내었다.

표 3. CGS의 유해물질 함유량 특성

연한석편 (%)	0.08mm체 통과량 (%)	염화물 함유량 (%)	강열감량 (%)
0	1.07	0.0015	0.17

3.2 산화마그네슘(MgO)

산화마그네슘의 경우. 용융슬래그는 규정이 없는데. CGS의 경우 2.0 % 정도 포함되어 있는 것이 확인되었다.

3.3 황(S)

황의 경우, 용융슬래그는 2.0 % 이하로 규정되어 있는데, OGS의 경우 0.29 %로 양호한 수치를 나타내었다.

3.4 삼산화황(SO3)

삼산화황의 경우, 용용슬래그는 0.5 % 이하로 규정되어 있는데, CGS는 0.9 %로 규정치를 벗어나는 수치를 나타내었다. 따라서, 모르타르 및 콘크리트의 팽창성 등과 관련하여 심도있는 검토가 요구된다.

3.5 산화철(FeO)

신화철의 경우, 용용슬래그는 규정이 없으나, CGS는 1.28 % 정도 포함되어 있는 것을 확인할 수 있었다.

3.6 금속철(Fe)

금속철의 경우, 용용슬래그는 1.0 % 이하로 규정되어 있는데, CGS는 0.84 %로 규격에 만족하는 것으로 나타났다.

3.7 염기도(CaO/SiO2)

염기도의 경우, 용융슬래그는 규정이 없으나, CGS는 0.9 % 정도 포함되어 있는 것으로 나타났다.

표 4. CGS의 화학성분 단위(단위(%)
규격	산화칼슘 (CaO)	산화마그네슘 (MgO)	황 (S)	삼산화황 (SO ₃)	산화철 (FeO)	금속철 (Fe)	염기도 (CaO/SiO₂)
KS F 2527 용융슬래그 골재	45.0 이하	규정 없음	2.0 이하	0.5 이하	규정 없음	1.0 이하	규정 없음
CGS	13.1	2.0	0.29	0.9	1.28	0.84	0.9
만족 여부	0	0	0	Χ	0	0	

4. 결 론

본 연구는 IGCC에서 발생하는 CGS를 콘크리트용 잔골재로 활용하기 위한 기초적 연구이다. 연구내용으로는 KS F 2527 중 화학성분에 대하여 검토하였다. 그 결과, 전반적으로 KS F 2527(콘크리트용 골재) 규격에 만족하는 것으로 나타났으나, 삼산화황(SO3)의 함유량이 용용슬래그의 규정치를 초과하는 것으로 나타났다. 따라서, 금후의 과제로는 모르타르 및 ㅋ노크리트의 팽창성 등과 관련하여 심도있는 검토가 요구되었다.

Acknowledgement

본 논문은 2017년 한국서부발전의 연구용역(과제번호: 201701510001)의 일환으로 수행된 연구임을 밝히며 이에 감사를 드립니다.

참 고 문 헌

Yoshitaka, Ishikawa, Utilization of Coal Gasification Slag Collected from IGCC as Fine Aggregate for Concrete, Chigasaki, Chigasak