콘크리트용 잔골재로서 석탄가스화복합발전 슬래그의 활용성 검토

- 물리적 성질 및 유해물질 함유량 특성을 중심으로 -

A Study on the Coal Gasification Slag as Fine Aggregate for Concrete

- Focus on Physical Properties and hazardous materials content characteristics -

현 승 용^{*} 한 준 희^{**} 이 재 진^{**} 신 용 섭^{***} 한 민 철^{****} 한 천 구^{****}

Hyun, Seong-Yong Han, Jun-Hui Lee, Jae-Jin Shin, Yong-Sub Han, Min-Cheol Han, Cheon-Goo

Abstract

This study is a fundamental consideration for using CGS from the IGCC as a fine aggregate for concrete. For the review, the physical properties and hazardous materials content of KS F 2527 were considered. The results showed that KS F 2527 standard was generally satisfied, making it possible to confirm the possibility that it is a fine metal considering its physical properties and hazardous materials content characteristics.

키 워 드 : 잔골재, 석탄가스화복합발전, 석탄가스화복합발전 슬래그

keywords: fine aggregate, integrated gasification combined cycle, coal gasification slag

1. 서 론

최근 우리나라에서는 미세먼지의 문제가 심각하게 대두됨에 따라 30년 이상 노후된 석탄화력의 경우 발전을 중단하고 있다. 이에 태안화력발전소에서는 석탄가스화복합발전(IGCC: Integrated Gasi-fication Combined Cycle)이라는 새로운 발전방식을 새롭게 도입하였다. IGCC는 미세먼지를 기존 석탄화력에 비해 20% 수준으로 감축할 수 있는 친환경적인 발전방식이다.

그러나, IGCC발전 중에는 부산물로 슬래그가 배출되고 있는데, 이를 석탄가 스화복합발전 슬래그(CGS: Coal Gasification Slag)라고 하는데, 현재 국내 에서 효율적인 활용방안이 연구된 바가 거의 없기 때문에 처리방법이 없는 현실 이다.

그러므로 본 연구에서는 IGCC에서 발생되는 슬래그인 CGS를 콘크리트용 잔골재로써의 활용 가능성을 분석하고자 하는데, 우선 잔골재로써의 물리적 특성 및 유해물질 함유량 특성을 분석하므로서 그 가능성 여부를 검토하고자 한다.

2. 실험계획 및 방법

본 연구의 실험계획은 표 1과 같다. 먼저 CGS의 경우 태안화력발전소에서 매주 1회 수급해온 6개의 시료를 혼합한 것을 대상으로 KS F 2527을 참고하여 물리적 특성 및 유해물질 함유량 특성에 대해 분석하고자 한다.

그림 1. IGCC의 사진

그림 2. CGS의 사진

표 1. 실험 계획

구분	실험요인	실험수준			
실험재료	CGS의 종류	1	· CGS 6회분을 혼합한 것"		
실험사항	물리적 특성	5	·밀도		
			· 흡수율		
			· 입형판정실적률		
			· 조립률		
			· 입도		
	유해물질 함유량 특성	4	· 연한석편		
			· 0.08mm체 통과량		
			· 염화물 함유량		
			· 강열감량		

¹⁾ CGS=Coal Gasification Slag, 태안화력발전소에서 매주 1회 수급

^{*} 청주대학교 건축공학과 석사과정, 교신저자(yc0933@naver.com)

^{**} 청주대학교 건축공학과 석사과정

^{***} 청주대학교 건축공학과 박사과정

^{****} 청주대학교 건축공학과 부교수, 공학박사

^{*****} 청주대학교 건축공학과 교수, 공학박사

3. 실험결과 및 분석

3.1 물리적성질

표 2는 KS F 2527 중 물리적 성질에 대한 규격과 CGS의 물리적 성질을 나타낸 것이다. 먼저 밀도의 경우, 천연골재 및 용융슬래그 모두 2.5 g/cm³이상으로 규정되어 있는데, CGS의 경우 2.7 g/cm³로 양호한 밀도 값을 나타내었다. 흡수율의 경우, 천연골재 및 용융슬래그 모두 3.0 %이하로 규정되어 있는데, CGS의 경우 2.26 %로 3.0 %이하에 만족하는 수치를 나타내었다. 안정성의 경우, 천연골재 및 용융슬래그 모두 10 %이하로 규정되어 있는데, CGS의 경우 3.0 %로 양호함이 확인되었다. 입형판정실적률의 경우, 천연골재는 규정이 없으나, 용융슬래그는 53 %이상으로 규정되어 있는데, CGS는 60.37 %로 53 %를 크게 상화하는 양호한 수치를 나타내었다. 팽창성의 경우에는 천연골재는 규정이 없으나, 용융슬래그는 2.0 %이하로 규정되어 있는데, CGS는 팽창성이 나타나지 않았다. 또한, 조립률의 경우에는 부순잔골재 이외의 골재는 최대 3.38, 최소 2.15 범위로 규정되어 있는데, CGS는 2.95로 양호한 결과가 확인되었다.

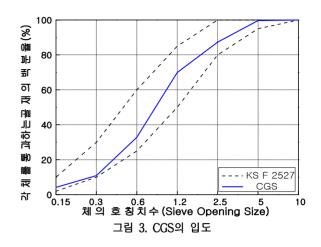


그림 3은 본 연구에서 사용한 CCIS의 입도를 나타낸 그래프인데, 균일자성을 나타내지만 KS규격 범위에 만족하는 것으로 나타났다.

표 2. CGS의 물리적 특성

규격		밀도 (g/cm³)	흡수율 (%)	안정성 (%)	입형판정실적률 (%)	팽창성 (%)	조립률	
KS F 2527	천연골재	2.5 이상	3.0 이하	10 이하	규정 없음	규정 없음	최대 3.38	
	용융슬래그 골재	2.5 이상	3.0 이하	10 이하	53 이상	2.0 이하	최소 2.15	
CGS		2.70	2.26	3.0	60.37	0	2.95	
만족 여부		0	0	0	0	0	0	

3.2 유해물질 함유량 특성

표 3은 KS F 2527 중 유해물질 함유량의 허용값에 대한 규격과 CGS의 유해물질 함유량 특성을 나타낸 것이다. 먼저 연한석편의 경우, 천연골재 및 용용슬래그 모두 규정이 없는데, CGS의 경우는 함유량이 없는 것이 확인되었다. 0.08mm체 통과량의 경우, 천연골재 및 용용슬래그 모두 5.0 % 이하로 규정되어 있으나, CGS의 경우에는 1.07 %로 규격범위에 만족하는 수치를 나타내었다. 염화물 함유량의 경우, 천연골재 및 용용슬래그 모두 0.04 %이하로 규정되어 있는데, CGS의 경우는 0.0015 %로 양호한 수치로 확인되었다. 강열감량의 경우, 천연골재 및 용용슬래그 모두 규정이 없는데, CGS의 경우에는 0.17 %로 나타났다.

표 3. CGS의 유해물질 함유량 특성

규격		연한석편 (%)	0.08mm체 통과량 (%)	염화물 함유량 (%)	강열감량 (%)
KS F 2527	천연골재	규정 없음	5.0 이하	0.04 이하	규정 없음
	용융슬래그 골재	규정 없음	5.0 이하	0.04 이하	규정 없음
CGS		0	1.07	0.0015	0.17
만족 여부		0	0	0	0

4. 결 론

본 연구는 IGCC에서 발생하는 CGS를 콘크리트용 잔골재로 활용하기 위한 기초적 검토이다. 검토내용으로는 KS F 2527 중 물리적 성질 및 유해물질 함유량 특성에 대하여 검토하였다. 그 결과, 전반적으로 KS F 2527(콘크리트용 골재) 규격에 만족하는 것으로 나타나, 물리적 성질 및 유해물질 함유량 특성에 한하여는 잔골재로써의 가능성을 확인할 수 있었다.

Acknowledgement

본 논문은 2017년 한국서부발전의 연구용역(과제번호: 201701510001)의 일환으로 수행된 연구임을 밝히며 이에 감시를 드립니다.

참 고 문 헌

Yoshitaka, Ishikawa, Utilization of Coal Gasification Slag Collected from IGCC as Fine Aggregate for Concrete, Chigasaki, Chigasak