• Title/Summary/Keyword: ID3 algorithm

Search Result 79, Processing Time 0.02 seconds

Approximate Life Cycle Assessment of Classified Products using Artificial Neural Network and Statistical Analysis in Conceptual Product Design (개념 설계 단계에서 인공 신경망과 통계적 분석을 이용한 제품군의 근사적 전과정 평가)

  • 박지형;서광규
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.3
    • /
    • pp.221-229
    • /
    • 2003
  • In the early phases of the product life cycle, Life Cycle Assessment (LCA) is recently used to support the decision-making fer the conceptual product design and the best alternative can be selected based on its estimated LCA and its benefits. Both the lack of detailed information and time for a full LCA fur a various range of design concepts need the new approach fer the environmental analysis. This paper suggests a novel approximate LCA methodology for the conceptual design stage by grouping products according to their environmental characteristics and by mapping product attributes into impact driver index. The relationship is statistically verified by exploring the correlation between total impact indicator and energy impact category. Then a neural network approach is developed to predict an approximate LCA of grouping products in conceptual design. Trained learning algorithms for the known characteristics of existing products will quickly give the result of LCA for new design products. The training is generalized by using product attributes for an ID in a group as well as another product attributes for another IDs in other groups. The neural network model with back propagation algorithm is used and the results are compared with those of multiple regression analysis. The proposed approach does not replace the full LCA but it would give some useful guidelines fer the design of environmentally conscious products in conceptual design phase.

A Design of Initial Cell Searcher for 3GPP LTE Downlink System (3GPP LTE 하향링크 시스템을 위한 초기 셀 탐색기 설계)

  • Shin, Kyung-Chan;Im, Se-Bin;Ok, Kwang-Man;Choi, Hyung-Jin
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.33 no.7A
    • /
    • pp.733-742
    • /
    • 2008
  • In 3GPP LTE downlink system, initial cell search is essential for mobile station to connect to base station. In order to obtain information of the base station, the mobile station detects frame timing, frequency offset, and cell identification using primary synchronization channel(PSC) and secondary synchronization channel(SSC), which are defined in downlink OFDMA specification. In this paper, we analyze various detection algorithms in practical environment of inter-cell-interference, frequency offset, and multi-path fading channel and propose the optimal algorithm. Simulation results show that partial correlation method (for PSC acquisition) and interference cancellation method (for SSC detection) are the most superior algorithms among the applicable algorithms. Employ these two algorithms for receiver design, initial cell search is performed with 99% probability within 70ms in the channel environment considered.

Effect of Anthropomorphism Level of Digital Human Banker Speech on User Experience: Focusing on Social Presence, Affinity, Trust, Perceived Intelligence, and Usefulness (디지털 휴먼 은행원 발화의 의인화 수준이 사용자 경험에 미치는 영향: 사회적 실재감, 친밀감, 신뢰도, 인지된 지능, 유용성을 중심으로)

  • Choi, Bomi;Jang, Seojin;Kang, Hyunmin
    • The Journal of the Convergence on Culture Technology
    • /
    • v.8 no.4
    • /
    • pp.469-476
    • /
    • 2022
  • As the 3D modeling technology and conversational algorithm is developed, digital humans are being used in various fields, and also virtual bankers have begun to appear in banks, including major banks such as Shin-Han Bank and Nong-Hyup Bank. However, most of the research of digital human mainly focus on its appearance, and research on robot persona that should be considered in anthropomorphizing a robot is insufficient. In this study, an experiment was conducted to find out the user experience of three scenarios (student ID receipt, deposit and withdrawal account opening, leasehold loan consultation) in which the level of anthropomorphism of the speech strategy and the level of personal information use differed in the specific context of banking. As a result of the study, social presence and usefulness had an interactive effect on the scenario and the level of anthropomorphism. There was no interaction effect on intimacy, trustworthiness, and perceived intelligence, but a tendency could be confirmed.

Host based Feature Description Method for Detecting APT Attack (APT 공격 탐지를 위한 호스트 기반 특징 표현 방법)

  • Moon, Daesung;Lee, Hansung;Kim, Ikkyun
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.24 no.5
    • /
    • pp.839-850
    • /
    • 2014
  • As the social and financial damages caused by APT attack such as 3.20 cyber terror are increased, the technical solution against APT attack is required. It is, however, difficult to protect APT attack with existing security equipments because the attack use a zero-day malware persistingly. In this paper, we propose a host based anomaly detection method to overcome the limitation of the conventional signature-based intrusion detection system. First, we defined 39 features to identify between normal and abnormal behavior, and then collected 8.7 million feature data set that are occurred during running both malware and normal executable file. Further, each process is represented as 83-dimensional vector that profiles the frequency of appearance of features. the vector also includes the frequency of features generated in the child processes of each process. Therefore, it is possible to represent the whole behavior information of the process while the process is running. In the experimental results which is applying C4.5 decision tree algorithm, we have confirmed 2.0% and 5.8% for the false positive and the false negative, respectively.

Multiple Objection and Tracking based on Morphological Region Merging from Real-time Video Sequences (실시간 비디오 시퀀스로부터 형태학적 영역 병합에 기반 한 다중 객체 검출 및 추적)

  • Park Jong-Hyun;Baek Seung-Cheol;Toan Nguyen Dinh;Lee Guee-Sang
    • The Journal of the Korea Contents Association
    • /
    • v.7 no.2
    • /
    • pp.40-50
    • /
    • 2007
  • In this paper, we propose an efficient method for detecting and tracking multiple moving objects based on morphological region merging from real-time video sequences. The proposed approach consists of adaptive threshold extraction, morphological region merging and detecting and tracking of objects. Firstly, input frame is separated into moving regions and static regions using the difference of images between two consecutive frames. Secondly, objects are segmented with a reference background image and adaptive threshold values, then, the segmentation result is refined by morphological region merge algorithm. Lastly, each object segmented in a previous step is assigned a consistent identification over time, based on its spatio-temporal information. The experimental results show that a proposed method is efficient and useful in terms of real-time multiple objects detecting and tracking.

DL Radio Transmission Technologies for WRAN Applications : Adaptive Sub-channel Allocation and Stationary Beamforming Algorithms for OFDMA CR System (WRAN 응용을 위한 하향링크 무선전송 방식 : OFDMA 상황인식 시스템에서의 적응 부채널 할당 및 고정 빔 형성 기법)

  • Kim Jung-Ju;Ko Sang-Jun;Chang Kyung-Hi
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.31 no.3A
    • /
    • pp.291-303
    • /
    • 2006
  • In this paper, we analyze functional requirements of the IEEE 802.22 WRAN, and propose a downlink 프레임 structure satisfying the requirements. The proposed downlink 프레임 structure maximizes e transmission efficiency by adopting the cognative radio to assign the sub-channel by reflecting the channel environment of WRAN. We also calculate the signalling overhead for both downlink and uplink, and analyze the performances of time synchronization, frequency synchronization and cell identification based on the 프리앰블 in downlink and suggest the channel estimation method tough 프리앰블 or pilot. As a final result, e stationary beamforming (SBF) algorithm with dynamic channel allocation(DCA) is proposed. The proposed OFDMA downlink 프레임 structure with channel adaptive sub-channel allocation for cognitive radio applications is verified to meet the requirements of IEEE 802.22 WRAN, by computer simulations.

Deep Learning-Based Algorithm for the Detection and Characterization of MRI Safety of Cardiac Implantable Electronic Devices on Chest Radiographs

  • Ue-Hwan Kim;Moon Young Kim;Eun-Ah Park;Whal Lee;Woo-Hyun Lim;Hack-Lyoung Kim;Sohee Oh;Kwang Nam Jin
    • Korean Journal of Radiology
    • /
    • v.22 no.11
    • /
    • pp.1918-1928
    • /
    • 2021
  • Objective: With the recent development of various MRI-conditional cardiac implantable electronic devices (CIEDs), the accurate identification and characterization of CIEDs have become critical when performing MRI in patients with CIEDs. We aimed to develop and evaluate a deep learning-based algorithm (DLA) that performs the detection and characterization of parameters, including MRI safety, of CIEDs on chest radiograph (CR) in a single step and compare its performance with other related algorithms that were recently developed. Materials and Methods: We developed a DLA (X-ray CIED identification [XCID]) using 9912 CRs of 958 patients with 968 CIEDs comprising 26 model groups from 4 manufacturers obtained between 2014 and 2019 from one hospital. The performance of XCID was tested with an external dataset consisting of 2122 CRs obtained from a different hospital and compared with the performance of two other related algorithms recently reported, including PacemakerID (PID) and Pacemaker identification with neural networks (PPMnn). Results: The overall accuracies of XCID for the manufacturer classification, model group identification, and MRI safety characterization using the internal test dataset were 99.7% (992/995), 97.2% (967/995), and 98.9% (984/995), respectively. These were 95.8% (2033/2122), 85.4% (1813/2122), and 92.2% (1956/2122), respectively, with the external test dataset. In the comparative study, the accuracy for the manufacturer classification was 95.0% (152/160) for XCID and 91.3% for PPMnn (146/160), which was significantly higher than that for PID (80.0%,128/160; p < 0.001 for both). XCID demonstrated a higher accuracy (88.1%; 141/160) than PPMnn (80.0%; 128/160) in identifying model groups (p < 0.001). Conclusion: The remarkable and consistent performance of XCID suggests its applicability for detection, manufacturer and model identification, as well as MRI safety characterization of CIED on CRs. Further studies are warranted to guarantee the safe use of XCID in clinical practice.

A City Path Travel Time Estimation Method Using ATMS Travel Time and Pattern Data (ATMS 교통정보와 패턴데이터를 이용한 도시부도로 통행시간 추정방안 연구)

  • KIM, Sang Bum;KIM, Chil Hyun;YOO, Byung Young;KWON, Yong Seok
    • Journal of Korean Society of Transportation
    • /
    • v.33 no.3
    • /
    • pp.315-321
    • /
    • 2015
  • ATMS calculates section travel time using two-way communication system called DSRC(Dedicated Short Range Communications) which collects data of RSE (Road Side Equipment) and Hi-pass OBU (On-board Unit). Travel time estimation in urban area involves uncertainty due to the interrupted flow. This study not only analyzed real-time data but also considered pattern data. Baek-Je-Ro street in Jeon-Ju city was selected as a test site. Existing algorithm was utilized for data filtering and pattern data building. Analysis results repoted that travel time estimation with 20% of real-time data and 80% of pattern data mixture gave minimum average difference of 37.5 seconds compare to the real travel time at the 5% significant level. Results of this study recommend usage of intermixture between real time data and pattern data to minimize error for travel time estimation in urban area.

A study of Artificial Intelligence (AI) Speaker's Development Process in Terms of Social Constructivism: Focused on the Products and Periodic Co-revolution Process (인공지능(AI) 스피커에 대한 사회구성 차원의 발달과정 연구: 제품과 시기별 공진화 과정을 중심으로)

  • Cha, Hyeon-ju;Kweon, Sang-hee
    • Journal of Internet Computing and Services
    • /
    • v.22 no.1
    • /
    • pp.109-135
    • /
    • 2021
  • his study classified the development process of artificial intelligence (AI) speakers through analysis of the news text of artificial intelligence (AI) speakers shown in traditional news reports, and identified the characteristics of each product by period. The theoretical background used in the analysis are news frames and topic frames. As analysis methods, topic modeling and semantic network analysis using the LDA method were used. The research method was a content analysis method. From 2014 to 2019, 2710 news related to AI speakers were first collected, and secondly, topic frames were analyzed using Nodexl algorithm. The result of this study is that, first, the trend of topic frames by AI speaker provider type was different according to the characteristics of the four operators (communication service provider, online platform, OS provider, and IT device manufacturer). Specifically, online platform operators (Google, Naver, Amazon, Kakao) appeared as a frame that uses AI speakers as'search or input devices'. On the other hand, telecommunications operators (SKT, KT) showed prominent frames for IPTV, which is the parent company's flagship business, and 'auxiliary device' of the telecommunication business. Furthermore, the frame of "personalization of products and voice service" was remarkable for OS operators (MS, Apple), and the frame for IT device manufacturers (Samsung) was "Internet of Things (IoT) Integrated Intelligence System". The econd, result id that the trend of the topic frame by AI speaker development period (by year) showed a tendency to develop around AI technology in the first phase (2014-2016), and in the second phase (2017-2018), the social relationship between AI technology and users It was related to interaction, and in the third phase (2019), there was a trend of shifting from AI technology-centered to user-centered. As a result of QAP analysis, it was found that news frames by business operator and development period in AI speaker development are socially constituted by determinants of media discourse. The implication of this study was that the evolution of AI speakers was found by the characteristics of the parent company and the process of co-evolution due to interactions between users by business operator and development period. The implications of this study are that the results of this study are important indicators for predicting the future prospects of AI speakers and presenting directions accordingly.