• Title/Summary/Keyword: ICP etcher

Search Result 36, Processing Time 0.022 seconds

Large Area Plasma for LCD Processing by Individyally Controlled Array Sources

  • Kim, Bong-Joo;Kim, Chin-Woo;Park, Se-Geun;Lee, Jong-Geun;Lee, Seung-Ul;Lee, Il-Hang;O, Beom-Hoan
    • Journal of Information Display
    • /
    • v.3 no.2
    • /
    • pp.26-30
    • /
    • 2002
  • Large area plasma source has been built for LCD etcher by an array of $2{\times}2$ ICP sources. Since only one RF power supply and one impedance matching network is used in this configuration, any difference in impedances of unit RF antennas causes unbalanced power delivery to the unit ICP. In order to solve this unavoidable unbalance, unit antenna is designed to have a movable tap, with which the inductance of each unit can be adjusted individually. The plasma density becomes symmetric and etch rate becomes more uniform with the impedance adjustment. The concept of adding axial time-varying magnetic field to the single ICP source is applied to the array ICP source, and is found to be effective in terms of etch rate and uniformity.

The generation of Uniform High Density Plasma of Inductively Coupled Plasma Etcher Enhanced by Alternating Axial Magnetic Field (축방향 자기장의 주기적 단속을 이용한 유도결합형 플라즈마 식각장비의 고품위 플라즈마 형성)

  • 정재성;김철식
    • Proceedings of the IEEK Conference
    • /
    • 1998.10a
    • /
    • pp.589-592
    • /
    • 1998
  • The performance of inductively coupled plasma (ICP) is enhanced by axial magnetic field driven by alternating current Helmholtz coils in this work. Langmuir pobe is used to characterize the plasma, and the etching performance is demonstrated with phororesist stripping process. It is shown that its density and uniformity depends on the frequency of driving current to the magnetic field.

  • PDF

Numerical Simulation: Effects of Gas Flow and Heat Transfer on Polymer Deposition in a Plasma Dry Etcher

  • Joo, Junghoon
    • Applied Science and Convergence Technology
    • /
    • v.26 no.6
    • /
    • pp.184-188
    • /
    • 2017
  • Polymer deposition pattern on the ceramic lid surface is analyzed by numerical modeling. Assumption was made that is affected by gas flow pattern from the horizontal and vertical nozzles, temperature profile from the finger-like branches made of graphite and electrostatic potential effect. Calculated results showed gas flow dynamics is less relevant than two others. Temperature and electrostatic effects are likely determining the polymer deposition pattern based on our numerical simulation results.

Preparation of Large Area Plasma Source by Helical Resonator Arrays (Helical Resonator 배열을 통한 대면적 고밀도 Plasma Source)

  • 손민영;김진우;박세근;오범환
    • Proceedings of the IEEK Conference
    • /
    • 2000.06b
    • /
    • pp.282-285
    • /
    • 2000
  • Four helical resonators are distributed in a 2 ${\times}$ 2 array by modifying upper part of the conventional reactive ion etching(RIE) type LCD etcher in order to prepare a large area plasma source. Since the resonance condition of the RF signal to the helical antenna, one RF power supply is used for delivering the power efficiently to all four helical resonators without an impedance matching network Previous work of 2 ${\times}$ 2array inductively coupled plasma(ICP)requires one matching circuit to each ICP antenna for more efficient power deliverly Distributions of ion density and electron temperature are measured in terms of chamber pressure, gas flow rate and RF power . By adjusting the power distribution among the four helical resonator units, argon plasma density of higher than 10$\^$17/㎥ with the uniformity of better than 7% can be obtained in the 620 ${\times}$ 620$\textrm{mm}^2$ chamber.

  • PDF

Analysis of Novel Helmholtz-inductively Coupled Plasma Source and Its Application for Nano-Scale MOSFETs

  • Park, Kun-Joo;Kim, Kee-Hyun;Lee, Weon-Mook;Chae, Hee-Yeop;Han, In-Shik;Lee, Hi-Deok
    • Transactions on Electrical and Electronic Materials
    • /
    • v.10 no.2
    • /
    • pp.35-39
    • /
    • 2009
  • A novel Helmholtz coil inductively coupled plasma(H-ICP) etcher is proposed and characterized for deep nano-scale CMOS technology. Various hardware tests are performed while varying key parameters such as distance between the top and bottom coils, the distance between the chamber ceiling and the wafer, and the chamber height in order to determine the optimal design of the chamber and optimal process conditions. The uniformity was significantly improved by applying the optimum conditions. The plasma density obtained with the H-ICP source was about $5{\times}10^{11}/cm^3$, and the electron temperature was about 2-3 eV. The etching selectivity for the poly-silicon gate versus the ultra-thin gate oxide was 482:1 at 10 sccm of $HeO_2$. The proposed H-ICP was successfully applied to form multiple 60-nm poly-silicon gate layers.

High Density Planar Inductively Coupled Plasma Etching of GaAs in BCl$_3$-based Chemistries (BCl$_3$ 기반 가스를 이용한 GaAs의 고밀도 평판형 유도결합 플라즈마 식각)

  • ;;;;;;S.J. Pearton
    • Journal of the Korean institute of surface engineering
    • /
    • v.36 no.5
    • /
    • pp.418-422
    • /
    • 2003
  • 평판형 유도결합 플라즈마 식각장비(inductively coupled plasma etcher)를 이용하여 각종 공정조건들에 따른 GaAs의 식각특성을 연구하였다. 공정변수들은 ICP 소스파워(0-500 W), RIE 척파워(0-150 W), 가스 종류($BCl_3$, $BCl_3$/Ar, $BCl_3$/Ne) 및 가스혼합비였다. $BCl_3$ 가스만을 이용하여 GaAs를 식각한 경우보다 25%의 Ar이나 Ne같은 불활성 기체를 혼합한 $15BCl_3$/5Ar, $15BCl_3$/5Ne 가스를 이용한 경우의 식각률이 더 우수한 것을 확인하였다. 그리고 50% 이하의 Ar이 혼합된 $BCl_3$/Ar의 경우는 높은 식각률 (>4,000 $\AA$/min)과 평탄한 표면(RMS roughness : <2 nm)을 얻을 수 있었지만 지나친 양(>50%)의 Ar의 혼합은 오히려 표면을 거칠게 하거나 식각률을 떨어뜨리는 결과를 가져왔다. 그리고 20 sccm $BCl_3$, 100 W RIE 척파워, 300 W ICP 소스파워, 공정압력이 7.5 mTorr인 조건에서의 GaAs의 식각결과는 아주 우수한 특성(식각률: ∼ 4,000, $\AA$/min, 우수한 수직측벽도: >$87^{\circ}$, 평탄한 표면: RMS roughness : ∼0.6 nm)을 나타내었다.

Modified Principal Component Analysis for In-situ Endpoint Detection of Dielectric Layers Etching Using Plasma Impedance Monitoring and Self Plasma Optical Emission Spectroscopy

  • Jang, Hae-Gyu;Choi, Sang-Hyuk;Chae, Hee-Yeop
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.182-182
    • /
    • 2012
  • Plasma etching is used in various semiconductor processing steps. In plasma etcher, optical- emission spectroscopy (OES) is widely used for in-situ endpoint detection. However, the sensitivity of OES is decreased if polymer is deposited on viewport or the proportion of exposed area on the wafer is too small. Because of these problems, the object is to investigate the suitability of using plasma impedance monitoring (PIM) and self plasma optical emission spectrocopy (SPOES) with statistical approach for in-situ endpoint detection. The endpoint was determined by impedance signal variation from I-V monitor (VI probe) and optical emission signal from SPOES. However, the signal variation at the endpoint is too weak to determine endpoint when $SiO_2$ and SiNx layers are etched by fluorocarbon on inductive coupled plasma (ICP) etcher, if the proportion of $SiO_2$ and SiNx area on Si wafer are small. Therefore, modified principal component analysis (mPCA) is applied to them for increasing sensitivity. For verifying this method, detected endpoint from impedance monitoring is compared with optical emission spectroscopy.

  • PDF

Development of New Etching Algorithm for Ultra Large Scale Integrated Circuit and Application of ICP(Inductive Coupled Plasma) Etcher (초미세 공정에 적합한 ICP(Inductive Coupled Plasma) 식각 알고리즘 개발 및 3차원 식각 모의실험기 개발)

  • 이영직;박수현;손명식;강정원;권오근;황호정
    • Proceedings of the IEEK Conference
    • /
    • 1999.06a
    • /
    • pp.942-945
    • /
    • 1999
  • In this work, we proposed Proper etching algorithm for ultra-large scale integrated circuit device and simulated etching process using the proposed algorithm in the case of ICP (inductive coupled plasma) 〔1〕source. Until now, many algorithms for etching process simulation have been proposed such as Cell remove algorithm, String algorithm and Ray algorithm. These algorithms have several drawbacks due to analytic function; these algorithms are not appropriate for sub 0.1 ${\mu}{\textrm}{m}$ device technologies which should deal with each ion. These algorithms could not present exactly straggle and interaction between Projectile ions and could not consider reflection effects due to interactions among next projectile ions, reflected ions and sputtering ions, simultaneously In order to apply ULSI process simulation, algorithm considering above mentioned interactions at the same time is needed. Proposed algorithm calculates interactions both in plasma source region and in target material region, and uses BCA (binary collision approximation4〕method when ion impact on target material surface. Proposed algorithm considers the interaction between source ions in sheath region (from Quartz region to substrate region). After the collision between target and ion, reflected ion collides next projectile ion or sputtered atoms. In ICP etching, because the main mechanism is sputtering, both SiO$_2$ and Si can be etched. Therefore, to obtain etching profiles, mask thickness and mask composition must be considered. Since we consider both SiO$_2$ etching and Si etching, it is possible to predict the thickness of SiO$_2$ for etching of ULSI.

  • PDF

Improvement of Brightness for AlGaInP High-brightness LEDs with Nano-scale Roughness on Top-GaP Surface (Top-GaP 상부에 나노 크기의 Roughness 처리에 의한 AlGaInP 고휘도 LED의 휘도 향상)

  • So, Soon-Jin;Ha, Hun-Sung;Park, Choon-Bae
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.21 no.1
    • /
    • pp.68-72
    • /
    • 2008
  • AlGaInP high-brightness LEDs(HB-LEDs) have gained importance a variety of application operating in the red, orange, yellow and yellow-green wavelength. The light generated from inside LED chips should be emitted to the air through the surfaces of the chips. However, because of the differences between the semiconductor and air or epoxy's refractive index, some of the light was blocked so that caused lowering external quantum efficiency. In this study, nano-scale roughness on the top-GaP layer of AlGaInP epitaxial wafer was fabricated to improve' the brightness of AlGaInP LEDs. Nano-scale roughness was made by ICP dry etcher. Our AlGaInP LEDs with nano-scale roughness has higher brightness (about 28.5 %) than standard AlGaInP LEDs.

Run-to-Run Control of Inductively Coupled C2F6 Plasmas Etching of SiO2;Construction of a Process Simulator with a CFD code

  • Seo, Seung-T.;Lee, Yong-H.;Lee, Kwang-S.;Yang, Dae-R.;Choi, Bum-Kyoo
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.519-524
    • /
    • 2005
  • A numerical process to simulate SiO2 dry etching with inductively coupled C2F6 plasmas has been constructed using a commercial CFD code as a first step to design a run-to-run control system. The simulator was tuned to reasonably predict the reactive ion etching behavior and used to investigate the effects of plasma operating variables on the etch rate and uniformity. The relationship between the operating variables and the etching characteristics was mathematically modeled through linear regression for future run-to-run control system design.

  • PDF