• Title/Summary/Keyword: ICP Etching

Search Result 297, Processing Time 0.034 seconds

Etching characteristics of Ru thin films with $CF_4/O_2$ gas chemistry ($CF_4/O_2$ gas chemistry에 의한 Ru 박막의 식각 특성)

  • Lim, Kyu-Tae;Kim, Dong-Pyo;Kim, Chang-Il;Choi, Jang-Hyun;Song, Joon-Tae
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.05b
    • /
    • pp.74-77
    • /
    • 2002
  • Ferroelectric Random Access Memory(FRAM) and MEMS applications require noble metal or refractory metal oxide electrodes. In this study, Ru thin films were etched using $O_2$+10% $CF_4$ plasma in an inductively coupled plasma(ICP) etching system. The etch rate of Ru thin films was examined as function of rf power, DC bias applied to the substrate. The enhanced etch rate can be obtained not only with increasing rf power and DC bias voltage, but also with small addition $CF_4$ gas. The selectivity of $SiO_2$ over Ru are 1.3. Radical densities of oxygen and fluorine in $CF_4/O_2$ plasma have been investigated by optical emission spectroscopy(OES). The etching profiles of Ru films with an photoresist pattern were measured by a field emission scanning electron microscope (FE-SEM). The additive gas increases the concentration of oxygen radicals, therefore increases the etch rate of the Ru thin films and enhances the etch slope. In $O_2$+10% $CF_4$ plasma, the etch rate of Ru thin films increases up to 10% $CF_4$ but decreases with increasing $CF_4$ mixing ratio.

  • PDF

Analysis of H-ICP Source by Noninvasive Plasma Diagnostics of Etching Process

  • Park, Kun-Joo;Kim, Min-Shik;Lee, Kwang-Min;Chae, Hee-Yeop;Lee, Hi-Deok
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.06a
    • /
    • pp.126-126
    • /
    • 2009
  • Noninvasive plasma diagnostic technique is introduced to analyze and characterize HICP (Helmholtz Inductively Coupled Plasma) source during the plasma etching process. The HICP reactor generates plasma mainly through RF source power at 13.56MHz RF power and RF bias power of 12.56MHz is applied to the cathode to independently control ion density and ion energy. For noninvasive sensors, the RF sensor and the OES (Optical emission spectroscopy) were employed since it is possible to obtain both physical and chemical properties of the reactor with plasma etching. The plasma impedance and optical spectra were observed while altering process parameters such as pressure, gas flow, source and bias power during the poly silicon etching process. In this experiment, we have found that data measured from these noninvasive sensors can be correlated to etch results. In this paper, we discuss the relationship between process parameters and the measurement data from RF sensor and OES such as plasma impedance and optical spectra and using these relationships to analyze and characterize H-ICP source.

  • PDF

Etching Mechanism of $YMnO_3$ Thin Films in High Density $CF_{4}/Ar$ Plasma (고밀도 $CF_{4}/Ar$ 플라즈마에서 $YMnO_3$ 박막의 식각 매카니즘)

  • Lee, Cheol-ln;Kim, Dong-Pyo;Kim, Chang-Il
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.05b
    • /
    • pp.12-16
    • /
    • 2001
  • We investigated the etching characteristics of $YMnO_3$ thin films in high-density plasma etching system. In this study. $YMnO_3$ thin films were etched with $CF_{4}/Ar$ gas chemistries in inductively coupled plasma (ICP). Etch rates of $YMnO_3$ were measured according to gas mixing ratios. The maximum etch rate of $YMnO_3$ is 18 nm/min at $CF_{4}/(CF_{4}+Ar)$ of 20%. In optical emission spectroscopy (OES) analysis, F radical and Ar* ions in plasma at various gas chemistries decreased with increasing $CF_4$ content. Chemical states of $YMnO_3$ films exposed in plasma were investigated with x-ray photoelectron spectroscopy (XPS) and secondary ion mass spectrometry (SIMS). There is a chemical reaction between metal (Y, Mn) and F and metal-fluorides were removed effectively by Ar ion sputtering. $YF_x$, $MnF_x$ such as YF, $YF_2$, $YF_3$ and $MnF_3$ Were detected using SIMS analysis. The etch slope is about $65^{\circ}C$ and free of residues.

  • PDF

The etching characteristics of PZT thin films in Ar/$Cl_2/BCl_3$ plasma using ICP (ICP를 이용한 Ar/$Cl_2/BCl_3$ 플라즈마에서 PZT 식각 특성)

  • An, Tae-Hyun;Kim, Kyoung-Tae;Lee, Young-Hie;Seo, Yong-Jin;Kim, Chang-Il;Chang, Eui-Goo
    • Proceedings of the KIEE Conference
    • /
    • 1999.11d
    • /
    • pp.848-850
    • /
    • 1999
  • In this study, PZT etching was performed using planar inductively coupled Ar(20)/$Cl_2/BCl_3$ plasma, The etch rate of PZT film was 2450 $\AA/min$ at Ar(20)/$BCl_3$(80) gas mixing ratio and substrate temperature of $80^{\circ}C$. X-ray photoelectron spectroscopy (XPS) analysis for film composition was utilized. The chemical bond of PbO is broken by ion bombardment, and the peak of metal Pb in a Pb 4f peak begins to appear upon etching, decreasing Pb content faster than Zr and Ti. As increase content of additive $BCl_3$, the relative content of oxygen decreases rapidly. We thought that abundant Band BCl radicals made volatile oxy-compound such as $B_{x}O_{y}$ and/or $BClO_x$ bond. To understand etching mechanism, Langmuir probe and optical emission spectroscopy (OES) analysis were utilized for plasma diagnostic.

  • PDF

The Etching Characteristics of the TaN Thin Films Using Inductively Coupled Plasma (유도 결합 플라즈마를 이용한 TaN 박막의 건식 식각 특성)

  • Li, Chen;Joo, Young-Hee;Woo, Jong-Chang;Kim, Han-Soo;Choi, Kyung-Rok;Kim, Chang-Il
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.26 no.1
    • /
    • pp.1-5
    • /
    • 2013
  • In this paper, we investigated the etching characteristics of the TaN thin films and the surface reaction of TaN thin films after etching process. The etching characteristics of the TaN thin films were carried out using inductively coupled plasma (ICP). The etch rate and the selectivity of TaN to $SiO_2$ and TaN to PR were measured by varying the gas mixing ratio, RF power, DC-bias voltage, and process pressure in CF-based plasma. The surface reaction of TaN thin films were determined by x-ray photoelectron spectroscopy (XPS).

Reactivity Evaluation on Copper Etching Using Organic Chelators (유기 킬레이터들을 이용한 구리 식각에 대한 반응성 평가)

  • Kim, Chul Hee;Lim, Eun Taek;Park, Chan Ho;Park, Sung Yong;Lee, Ji Soo;Chung, Chee Won;Kim, Dong Wook
    • Korean Journal of Materials Research
    • /
    • v.31 no.10
    • /
    • pp.569-575
    • /
    • 2021
  • The reactivity evaluation of copper is performed using ethylenediamine, aminoethanol, and piperidine to apply organic chelators to copper etching. It is revealed that piperidine, which is a ring-type chelator, has the lowest reactivity on copper and copper oxide and ethylenediamine, which is a chain-type chelator, has the highest reactivity via inductively coupled plasma-mass spectroscopy (ICP-MS). Furthermore, it is confirmed that the stable complex of copper-ethylenediamine can be formed during the reaction between copper and ethylenediamine using nuclear magnetic resonance (NMR) and radio-thin layer chromatography. As a final evaluation, the copper reactivity is evaluated by wet etching using each solution. Scanning electron micrographs reveal that the degree of copper reaction in ethylenediamine is stronger than that in any other chelator. This result is in good agreement with the evaluation results obtained by ICP-MS and NMR. It is concluded that ethylenediamine is a prospective etch gas for the dry etching of the copper.

High density plasma etching of single crystalline $La_3Ga_5SiO_{14}$ for wide band high temperature SAW filter devices (광대역 고온용 SAW filter 소자용 $La_3Ga_5SiO_{14}$ 단결정의 고밀도 플라즈마 식각)

  • Cho, Hyun
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.15 no.6
    • /
    • pp.234-238
    • /
    • 2005
  • Effects of plasma composition, ion flux and ion energy on the etch rate, surface morphology and near surface stoichiometry of a single crystalline $La_3Ga_5SiO_{14}$ wafer have been examined in $Cl_2/Ar$ inductively coupled plasma (ICP) discharges. Maximum etch rate ${\sim}1600{\AA}/min$ was achieved either at relatively high source power $({\sim}1000W)$ or high $Cl_2$ content conditions in $Cl_2/Ar$ discharges. The etched surfaces showed similar or better RMS roughness values than those of the unetched control sample and the near surface stoichiometry was found not to be affected by ICP etching.

Comparison of InGaef etching $BCl_3,\;BCl_3/Ar\;and\;BCl_3/Ne$ inductively coupled plasmas ($BCl_3,\;BCl_3/Ar,\;BCl_3/Ne$ 유도결합 플라즈마에 의한 InGaP 건식 식각 비교)

  • Baek, In-Kyoo;Lim, Wan-Tae;Lee, Je-Won;Jo, Guan-Sik;Jeon, Min-Hyun
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.07a
    • /
    • pp.361-365
    • /
    • 2003
  • Planar Inductively Coupled Plasma (PICP) etching of InGaP was performed in $BCl_3,\;BCl_3/Ar\;and\;BCl_3/Ne$ plasmas as a function of ICP source power ($0\;{\sim}\;500\;W$), RIE chuck power ($0\;{\sim}\;150\;W$), chamber pressure ($5\;{\sim}\;15\;mTorr$) and gas composition of $BCl_3/Ar\;and\;BCl_3/Ne$. Total gas flow was fixed at 20 sccm (standard cubic centimeter per minute). Increase of ICP source power and RIE chuck power raised etch rate of InGaP, while that of chamber pressure reduced etch rate. We also found that some addition of Ar and Ne in $BCl_3$ plasma improved etch rate of InGaP. InGaP etch rate was varied from $1580\;{\AA}/min$ with pure $BC_3\;to\;2800\;{\AA}/min$ and $4700\;{\AA}/min$ with 25 % Ar and Ne addition, respectively. Other process conditions were fixed at 300 W ICP source power, 100 W RIE chuck power and 7.5 mTorr chamber pressure. SEM (scanning electron microscopy) and AFM (atomic force microscopy) data showed vertical side wall and smooth surface of InGaP at the same condition. Proper addition of noble gases Ar and Ne (less than about 50 %) in $BCl_3$ inductively coupled plasma have resulted in not only increase of etch rate but also minimum preferential loss and smooth surface morphology by ion-assisted effect.

  • PDF

Oxide etching characteristics of Enhanced Inductively Coupled Plasma (E-ICP에 의한 산화막 식각특성)

  • 조수범;송호영;박세근;오범환
    • Proceedings of the IEEK Conference
    • /
    • 2000.06b
    • /
    • pp.298-301
    • /
    • 2000
  • We investigated the etch rate of SiO$_2$ in E-ICP, ICP system and the addition gas (O$_2$H$_2$) effect on SiO$_2$ etch characteristics. In all conditions, E-ICP shows higher etch rate than ICP. Small amount of O$_2$ addition increase F atom and O$\^$*/ concentration. at optimized condition (30% O$_2$ in CF$_4$, 70Hz) E-ICP system shows highest etch rate (about 6000${\AA}$). H$_2$addition in CF$_4$ Plasma make abrupt decrease Si etch rate and moderate decrease SiO$_2$ etch rate.

  • PDF

Inductively Coupled Plasma Etching of GST Thin Films in $Cl_2$/Ar Chemistry ($Cl_2$/Ar 분위기에서 GST 박막의 ICP 에칭)

  • Yoo, Kum-Pyo;Park, Eun-Jin;Kim, Man-Su;Yi, Seung-Hwan;Kwon, Kwang-Ho;Min, Nam-Ki
    • Proceedings of the KIEE Conference
    • /
    • 2006.07c
    • /
    • pp.1438-1439
    • /
    • 2006
  • $Ge_{2}Sb_{2}Te_5$(GST) thin film at present is a promising candidate for a phase change random access memory (PCRAM) based on the difference in resistivity between the crystalline and amorphous phase. PCRAM is an easy to manufacture, low cost storage technology with a high storage density. Therefore today several major chip in manufacturers are investigating this data storage technique. Recently, A. Pirovano et al. showed that PCRAM can be safely scaled down to the 65 nm technology node. G. T Jeonget al. suggested that physical limit of PRAM scaling will be around 10 nm node. Etching process of GST thin ra films below 100 nm range becomes more challenging. However, not much information is available in this area. In this work, we report on a parametric study of ICP etching of GST thin films in $Cl_2$/Ar chemistry. The etching characteristics of $Ge_{2}Sb_{2}Te_5$ thin films were investigated using an inductively coupled plasma (ICP) of $Cl_2$/Ar gas mixture. The etch rate of the GST films increased with increasing $Cl_2$ flow rate, source and bias powers, and pressure. The selectivity of GST over the $SiO_2$ films was higher than 10:1. X-ray photoelectron spectroscopy(XPS) was performed to examine the chemical species present in the etched surface of GST thin films. XPS results showed that the etch rate-determining element among the Ge, Sb, and Te was Te in the $Cl_2$/Ar plasma.

  • PDF