We have constructed a molecular linkage map of chili pepper (Capsicum spp.) in an interspecific (C. annuum cv. TF68 x C. chinense cv. Habanero) F$_2$ population of 107 plants with 150 RFLP and 430 AFLP markers. The resulting linkage map consists of 11 large (206-60.3 cM) and 5 small (32.6- 10.3 cM) linkage groups cover-ing 1,320 cM with an average map distance between framework markers of 7.5 cM. Most (80%) of the RFLP markers were pepper-derived clones and these markers were evenly distributed across the genome. By using 30 primer combinations, 444 AFLP markers were generated in the F$_2$population. The majority of the AFLP markers clustered in each linkage group, although PstI/MseI markers were more evenly distributed than Eco RI/MseI markers within the linkage groups. Genes for biosynthesis of carotenoids and capsaicinoids were mapped on our linkage map. This map will provide the basis of studying secondary metabolites in pepper.
In this paper, we introduce a partitioning ideal of a ternary semiring which is useful to develop the quotient structure of ternary semiring. Indeed we prove : 1) The quotient ternary semiring S/$I_{(Q)}$ is essentially independent of choice of Q. 2) If f : S ${\rightarrow}$ S' is a maximal ternary semiring homomorphism, then S/ker $f_{(Q)}$${\cong}$ S'. 3) Every partitioning ideal is subtractive. 4) Let I be a Q-ideal of a ternary semiring S. Then A is a subtractive ideal of S with I ${\subseteq}$ A if and only if A/$I_{(Q{\cap}A)}$ = {q + I : q ${\in}$ Q ${\cap}$ A} is a subtractive idea of S/$I_{(Q)}$.
Objectives : The aim of this study was to know the immunity response of Haedongpibokhap-bang($H{\check{a}}it{\acute{o}}ngp{\acute{i}}f{\grave{u}}h{\acute{e}}-f{\bar{a}}ng$) to rheumatoid arthritis in collagen-induced arthritis(CIA) mice. Methods : For this purpose, Haedongpibokhap-bang($H{\check{a}}it{\acute{o}}ngp{\acute{i}}f{\grave{u}}h{\acute{e}}-f{\bar{a}}ng$) was orally administerd to mice with arthritis induced by collagen II and then value of immunocyte in spleen, draining lymph node and paw joint and cytokine(IL-6, $TNF-{\alpha}$), rheumatoid factor (IgG and IgM) in serum were measured. Results : 1. The arthritis index was significantly decreased. 2. In total cell counts of spleen, DLN and paw joint, the cells in spleen decreased while there was a significant increase in DLN and significant decrease in paw joint. 3. In lymph nodes, CD3+, CD3+/CD69+, CD4+, CD8+ cells increased significantly. 4. In joints, CD3+ and CD11+b/Gr-1+ cells decreased significantly. 5. Serum IL-6 and $TNF-{\alpha}$ were decreased significantly. 6. Production of serum IgG and IgM decreased significantly. Conclusions : The results present that Haedongpibokhap-bang($H{\check{a}}it{\acute{o}}ngp{\acute{i}}f{\grave{u}}h{\acute{e}}-f{\bar{a}}ng$) controls abnormal activity of immune system, inhibitig collagen-induced arthritis(CIA).
The Transactions of the Korea Information Processing Society
/
v.1
no.2
/
pp.184-193
/
1994
This paper considers the Updating Minimum-weight Spanning Tree Problem(UMP), that is, the problem to update the Minimum-weight Spanning Tree(MST) in response to topology change of the network. This paper proposes the algorithm which reconstructs the MST after several links deleted and added. Its message complexity and its ideal-time complexity are Ο(m+n log(t+f)) and Ο(n+n log(t+f)) respectively, where n is the number of processors in the network, t(resp.f) is the number of added links (resp. the number of deleted links of the old MST), And m=t+n if f=Ο, m=e (i.e. the number of links in the network after the topology change) otherwise. Moreover the last part of this paper touches in the algorithm which deals with deletion and addition of processors as well as links.
This paper is concerned with the impulsive Cauchy problem where the control function u is a possibly discontinuous vector-valued function with finite total variation. We assume that the vector fields f, $g_i$(i=1,…, m) are dependent on the time variable. The impulsive Cauchy problem is of the form x(t)=f(t,x) +$\SUMg_i(t,x)u_i(t)$, $t\in$[0,T], x(0)=$\in\; R^n$, where the vector fields f, $g_i$ : $\mathbb{R}\; \times\; \mathbb{R}\; \longrightarrow\; \mathbb(R)^n$ are measurable in t and Lipschitz continuous in x, If $g_i's$ satisfy a condition that $\SUM{\mid}g_i(t_2,x){\mid}{\leq}{\phi}$$\forallt_1\; <\; t-2,x\; {\epsilon}\;\mathbb{R}^n$ for some increasing function $\phi$, then the imput-output function can be continuously extended to measurable functions of bounded variation.
In this paper, we are concerned with the following eigenvalue problems of m-point boundary value problem for p-Laplacian dynamic equation on time scales $(\varphi_p(u^{\Delta}(t)))^\nabla+{\lambda}h(t)f(u(t))=0,\;t\in(0,T)$, $u(0)=0,\varphi_p(u^{\Delta}(T))=\sum\limits_{i=1}^{m-2}a_i\varphi_p(u^{\Delta}(\xi_i))$, where $\varphi_p(u)=|u|^{p-2}$u, p > 1 and $\lambda$ > 0 is a real parameter. Under certain assumptions, some new results on existence of one or two positive solution and nonexistence are obtained for $\lambda$ evaluated in different intervals. Our work develop and improve many known results in the literature even for the continual case. In doing so the usual restriction that $f_0=lim_{u{\rightarrow}0}+f(u)/\varphi_p(u)$ and $f_\infty = lim_{u{\rightarrow}{\infty}}f(u)/\varphi_p({u})$ exist is removed. As an applications, an example is given to illustrate the main results obtained.
Journal of the korean academy of Pediatric Dentistry
/
v.5
no.1
/
pp.39-43
/
1978
I have studied on the dental caries incidence of 172 poliomyelitis children who are housed in rehabilitation hospital age from 3 to 13 years compared to a group of normal children. The results were as follows; 1. def rate of the poliomyelitis children was 68.63% (male 66.67%, female 71.43%) and was low value compare with that of control group of 78.64% (M 75.93%, F81.63%). 2. def index per person of poliomyelitis children was 2.37 (M 2.00, F 2.91) and was low in number compare with that of 3.29 (M 3.33, F 3.24) in control group children. 3. DMF rate of the poliomyelitis children was 59.41% (M 54.55%, F 62.79%) and was higher value than that of 48.28% (M 37.88%, F 59.96%) in control group. 4. DMF incidence per person in poliomyelitis was 1.62 (M1.48, F1.89) and was also higher in number than that of 1. 220 (M 0.85, F 1.49) in control group. 5. The dental caries incidence was higher in female than in male.
Kim, Chung Suk;Chung, Woo Kyu;Ahn, Joong Kug;Jeong, Mee Jeong;Han, Chang Sook
Journal of Korean Society of Forest Science
/
v.73
no.1
/
pp.9-13
/
1986
Karyotypes are described for Juniperus rigida Sieb. et zucc, in two provenances of Gyeong-nam and Choong-puk. Chromosome numbers of two provenances, are 2n=22. The most common feature of mitotic chromosomes was shown at the chromosome 7, which has secondary constriction on the short arm. And the most differential chromosome was shown at chromosome 9 from Gyeong-nam and chromosome 5 from Choong-puk provenance which bore secondary constriction. The karyotype formulae are as follows; Gyeong-nam, Jinyang provenance race is $$K(2n)=22=2A^m+2B^m+2C^m+2D^{sm}+2E^{st}+2F^m+2^{sc}G^m+2H^m+2^{sc}I^t+2J^{st}+2K^m$$ Choong-puk, Jechun provenance race is $$K(2n)=22=2A^m+2B^m+2C^m+2D^{st}+2^{sc}E^{sm}+2F^m+2^{sc}G^m+2H^m+2I^m+2J^{st}+2K^{sm}$$.
A k-dimensional vector bundle is a bundle ${\xi}=(E,P,B,F^k)$ with fibre $F^k$ satisfying the local triviality, where F is the field of real numbers R or complex numbers C ([1], [2] and [3]). Let $Vect_k(X)$ be the set consisting of all isomorphism classes of k-dimensional vector bundles over the topological space X. Then $Vect_F(X)=\{Vect_k(X)\}_{k=0,1,{\cdots}}$ is a semigroup with Whitney sum (${\S}1$). For a pair (X, A) of topological spaces, a difference isomorphism over (X, A) is a vector bundle morphism ([2], [3]) ${\alpha}:{\xi}_0{\rightarrow}{\xi}_1$ such that the restriction ${\alpha}:{\xi}_0{\mid}A{\longrightarrow}{\xi}_1{\mid}A$ is an isomorphism. Let $S_k(X,A)$ be the set of all difference isomorphism classes over (X, A) of k-dimensional vector bundles over X with fibre $F^k$. Then $S_F(X,A)=\{S_k(X,A)\}_{k=0,1,{\cdots}}$, is a semigroup with Whitney Sum (${\S}2$). In this paper, we shall prove a relation between $Vect_F(X)$ and $S_F(X,A)$ under some conditions (Theorem 2, which is the main theorem of this paper). We shall use the following theorem in the paper. THEOREM 1. Let ${\xi}=(E,P,B)$ be a locally trivial bundle with fibre F, where (B, A) is a relative CW-complex. Then all cross sections S of ${\xi}{\mid}A$ prolong to a cross section $S^*$ of ${\xi}$ under either of the following hypothesis: (H1) The space F is (m-1)-connected for each $m{\leq}dim$ B. (H2) There is a relative CW-complex (Y, X) such that $B=Y{\times}I$ and $A=(X{\times}I)$${\cap}(Y{\times}O)$, where I=[0, 1]. (For proof see p.21 [2]).
In the analysis of circular cylindrical shell's vibration and sound radiation, there are numerical and analytical methods. Numerical methods such as F.E.M and B.E.M, have the limit of frequency range. Analytical method can be applied to the circular cylindrical shell from low frequency to high frequency. In this paper, we use the analytical method for shell, and numerical method, F.D.M, for fluid. We also use the method using transfer matrix and eigenanalysis of transfer matrix which can therefore calculate the rotational d.o.f that is very imkportant in synthesis with inner structure. Inner structure has much effect on the submerged circular cylindrical shell vibration and sound rediation. Results for the immersed circular cylindrical shell vibration and sound radiation are compared with the analytic solutions.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.