• Title/Summary/Keyword: Hyundai Motor Company

Search Result 471, Processing Time 0.021 seconds

Computational Analysis and Measurement for SDR-based Spectrum Sensing System Design on Single Board Computer (소프트웨어 정의 라디오 기반 스펙트럼 센싱 시스템 설계를 위한 단일 보드 컴퓨터 내 연산 분석 및 측정 연구)

  • Kim, Joon Young
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.23 no.12
    • /
    • pp.1650-1658
    • /
    • 2019
  • In recent years, IoT device and platform become widely popular and the computing performance and capabilities of IoT devices are also getting improved. However, the size and computing resources of IoT devices, especially small single board computer, are limited in a way that the design and implementation of the system should be carefully considered to operate on the devices. Recently, SDR technologies are adapting in IoT devices and can perform various radio systems. Thorough analysis and investigation of computer performances on small single board computer are necessary for its usage. In this paper, we present the results of computing resources measurement and analysis on small single-board computers. At first, we consider to design SDR based spectrum sensing for single board computer, investigate various key factors and propose a design procedure that can affect performance of the system with experiments.

Evaluation of Resistance Spot Weld Interfacial Fractures in Tensile-Shear Tests of TRIP 590 Steels (저항 점 용접된 TRIP590강의 계면파단특성에 관한 평가)

  • Park, Sang-Soon;Lee, Sang-Min;Cho, Yongjoon;Kang, Nam-Hyun;Yu, Ji-Hun;Kim, Young-Seok;Park, Yeong-Do
    • Korean Journal of Metals and Materials
    • /
    • v.46 no.10
    • /
    • pp.672-682
    • /
    • 2008
  • The resistance spot welding of TRIP590 steels was investigated to enhance understanding of weld fracture during tensile-shear strength (TSS) test. The main failure modes for spot welds of TRIP590 steels were nugget pullout and interfacial fracture. The peak load to cause a weld interfacial failure was found to be related to fracture toughness of the weld and the weld diameter. Although interfacial fracture occurred in the samples, the load carrying capacity of the weld was high and not significantly affected by the fracture mode. Substantial part of the weld exhibits the characteristic dimple (or elongated dimple) fractures on interfacial fractured surface, in spite of the high hardness values associated with the martensite microstructures. The high load-bearing ability of the weld is directly associated with the area of ductile fracture occurred in weld. Therefore, the judgment of the quality of resistance spot welds in TRIP590 steels, the load carrying capacity of the weld should be considered as an important factor than fracture mode.

Object Detection of AGV in Manufacturing Plants using Deep Learning (딥러닝 기반 제조 공장 내 AGV 객체 인식에 대한 연구)

  • Lee, Gil-Won;Lee, Hwally;Cheong, Hee-Woon
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.25 no.1
    • /
    • pp.36-43
    • /
    • 2021
  • In this research, the accuracy of YOLO v3 algorithm in object detection during AGV (Automated Guided Vehicle) operation was investigated. First of all, AGV with 2D LiDAR and stereo camera was prepared. AGV was driven along the route scanned with SLAM (Simultaneous Localization and Mapping) using 2D LiDAR while front objects were detected through stereo camera. In order to evaluate the accuracy of YOLO v3 algorithm, recall, AP (Average Precision), and mAP (mean Average Precision) of the algorithm were measured with a degree of machine learning. Experimental results show that mAP, precision, and recall are improved by 10%, 6.8%, and 16.4%, respectively, when YOLO v3 is fitted with 4000 training dataset and 500 testing dataset which were collected through online search and is trained additionally with 1200 dataset collected from the stereo camera on AGV.

A Study on Cost Estimation for Smart Mobility Service (스마트 모빌리티 서비스를 위한 비용추정)

  • Cheon, Seohyung;Kim, Dongyeon;Ahn, Jae-Hyeon;Park, Kyuhong
    • Journal of Digital Convergence
    • /
    • v.19 no.11
    • /
    • pp.301-313
    • /
    • 2021
  • The automotive industry is facing a paradigm shift, changing from owning to sharing and from manufacturing to service. However, it is hard to conclude that the economic value of smart mobility service is always positive to users. Cost related to owing or share a vehicle is very hard to estimate from the perspective of potential users as well as the benefit of the service. Focusing on the cost side of the story, this study develops a cost estimating model based on three main factors: electrification, advanced driving assistant systems (ADAS) function, and participation of ride-sharing service. As a result of the model analysis, low cost was estimated as a result when receiving cost benefits such as electrification and ride-sharing participation. Various factors were analyzed through sensitivity analysis also. These results can provide useful insights into the cost prediction and strategies for potential users and manufacturers on smart mobility service market.

Study on sound radiation estimation using a reciprocity technique and p-p method by finite element simulation (상반성 기법과 p-p method를 이용한 구조물 방사소음 유한요소해석 기법 연구)

  • Ji Woo Yoo;Hun Park;Ji Un Lee
    • The Journal of the Acoustical Society of Korea
    • /
    • v.42 no.1
    • /
    • pp.1-6
    • /
    • 2023
  • Sound radiated from a structure in vibration is an important physical characteristic to evaluate vibro-acoustic problem. Although sound radiation power can be typically obtained by intensity measurement, long measuring time and strict measuring condition remain difficult. As an alternative method, simulation-based estimation can be taken into account and its accuracy is known to be acceptable. However, difficulty still lies in that specialized softwares may be necessary to obtain sound radiation power and radiation efficiency. In this context, this study suggests two methods using an ordinary FE method to calculate sound radiation power. They are well-known reciprocity technique and p-p method, which are basically test methods. It is shown that either method can practically estimate sound radiation in the frame of conventional Finite Element Method (FEM). The methods and their corresponding limit are discussed with some results.

Evaluation of Seat Comfort and Pressure Distribution According to the Ergonomic Design of Automobile Seats (자동차 시트의 인간공학적 디자인에 따른 착좌 안락감 및 압력분포 평가)

  • Halim Chung;Jun Won Choi;Seung Wan Yang;Chun Kyu Park;Do Yong Kim;Chang Hyun Song;Jong Bae Kim;Han Sung Kim
    • Journal of Biomedical Engineering Research
    • /
    • v.44 no.2
    • /
    • pp.157-165
    • /
    • 2023
  • The purpose of this study was to evaluate the importance of developing slim seats with ergonomic design to improve seat comfort and expand the interior space. Two seats were used for the experiment: a sample seat designed based on hip shape and spinal alignment and a normal seat with a flat design without curves. Subjects sat in both the sample seat and a normal seat applied to the vehicle simulator and the experiment was conducted. The next part of the experiment was conducted in two different postures: a driving posture and a relaxed posture. The subjects filled out a comfort questionnaire immediately after sitting and after 30 minutes. The results showed that the comfort in the sample seat was found to be more comfortable than the normal seat. However, no significant difference was noted for the relaxation posture. Pressure distribution was also recorded immediately after sitting and after 30 minutes. In the case of pressure distribution, it was confirmed that the pressure in the sample seat was more evenly distributed in both the driving and relaxed postures than in the normal seat. The results showed that the ergonomically designed sample seat greatly improved seating comfort and pressure distribution compared to the normal seat, which is a general vehicle seat design.

Study on the Mechanical Properties of PET Fiber and the Adiabatic Properties of PET Fabrics by their Adiabatic Material Contents (단열성 재료 함량에 따른 PET 원사의 기계적 물성 및 직물의 단열성에 관한 연구)

  • Tae Yoon Kim;Sun Min Kwon;See Hyeon Chae;Ye Dam Jeong;Hyun Je Cho;Ik Sung Choi;Jongwon Kim
    • Textile Coloration and Finishing
    • /
    • v.35 no.2
    • /
    • pp.128-136
    • /
    • 2023
  • Recently, the automobile industry is developing as the demand for automo- biles increases due to industrial development and population growth. In addition, many studies are being conducted to reduce heat loss inside the automobiles in order to save energy inside the automobiles due to environmental regulations. In this study, alumina, nanosilicon, and aerogel, which are adiabatic materials, were filled in PET to manufacture yarn, identify physical and mechanical properties, and weave into fabric to confirm adiabatic performance. As the content of the adiabatic material increased, the tensile strength of the fibers filled with alumina and nanosilicon decreased greatly, and the adiabatic property slightly increased. The tensile strength of fibers filled with the aerogel decreased slightly, but the adiabatic properties were greatly increased. Therefore, it is considered to be due to the large volume fraction in the PET yarn due to the low density of the aerogel.

Bio-based Polypropylene Composites: Plausible Sustainable Alternative to Plastics in Automotive Applications

  • Ji Won Kwon;Sarbaranjan Paria;In Soo Han;Hyeok Jee;Sung Hwa Park;Sang Hwan Choi;Jeong Seok Oh
    • Elastomers and Composites
    • /
    • v.59 no.2
    • /
    • pp.51-63
    • /
    • 2024
  • Polypropylene (PP) is a commodity plastic that is widely used owing to its cost-effectiveness, lightweight nature, easy processability, and outstanding chemical and thermomechanical characteristics. However, the imperative to address energy and environmental crises has spurred global initiatives toward a circular economy, necessitating sustainable alternatives to traditional fossil-fuel-derived plastics. In this study, we conducted a series of comparative investigations of bio-based polypropylene (bio-PP) blends with current PP of the same and different grades. An extrusion-based processing methodology was employed for the bio-PP composites. Talc was used as an active filler for the preparation of the composites. A comparative analysis with the current petroleum-based PP indicated that the thermal properties and tensile characteristics of the bio-PP blends and composites remained largely unaltered, signifying the feasibility of bio-PP as a potential substitute for the current PP. To achieve a higher Young's modulus, elongation at break (EAB), and melt flow index (MFI), we prepared different composites of PP of different grades and bio-PP with varying talc contents. Interestingly, at higher biomass contents, the composites exhibited higher MFI and EAB values with comparable Young's moduli. Notably, the impact strengths of the composites with various biomass and talc contents remained unaltered. In-depth investigations through surface analysis confirmed the uniform dispersion of talc within the composite matrix. Furthermore, the moldability of the bio-PP composites was substantiated by comprehensive rheological property assessments encompassing shear rate and shear viscosity. Thus, from these outcomes, the fabricated bio-PP-based composites could be an alternative to petroleum-based PP composites for sustainable automobile applications.

Study on Ohmic Resistance of Polymer Electrolyte Fuel Cells Using Current Interruption Method (전류차단법을 이용한 고분자전해질 연료전지의 오믹 저항 연구)

  • Ji, Sanghoon;Hwang, Yong-Sheen;Lee, Yoon Ho;Park, Taehyun;Paek, Jun Yeol;Chang, Ikwhang;Cha, Suk Won
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.37 no.4
    • /
    • pp.353-358
    • /
    • 2013
  • The current interruption method is considered to be an efficient way of measuring the resistance of a fuel cell. In this study, the ohmic area specific resistances (ASRs) of polymer electrolyte fuel cells with different types of bipolar plates were evaluated using the current interruption method. The ohmic ASRs of both a fuel cell with graphite bipolar plates and a fuel cell with graphite foil-based assembled bipolar plates decreased as the current density increased. On the other hand, with increasing cell temperature, the ohmic ASRs of a fuel cell with graphite bipolar plates were decreased by a reduction in the proton transport resistance through the membrane, and the ohmic ASRs of a fuel cell with graphite foil-based assembled bipolar plates were increased by the differences in thermal expansion between different components of the bipolar plates.

Modeling of the dynamic behavior of a 12-V automotive lead-acid battery (12V 차량용 납축전지의 동적 거동 모델링)

  • Kim, Sung Tae;Lee, Jeong Bin;Kim, Ui Seong;Shin, Chee Burm
    • Journal of Energy Engineering
    • /
    • v.22 no.2
    • /
    • pp.175-183
    • /
    • 2013
  • For the optimal design of the vehicle electric system, it is important to have a reliable modeling tool to predict the dynamic behavior of the automotive battery. In this work, a one-dimensional modeling was carried-out to predict the dynamic behaviors of a 12-V automotive lead-acid battery. The model accounted for electrochemical kinetics and ionic mass transfer in a battery cell. In order to validate the modeling, modeling results were compared with the experiment data of the dynamic behaviors of the lead-acid batteries of two different capacities that were mounted on the automobiles manufactured by Hyundai Motor Company. The discharge behaviors were measured with various discharge rates of C/3, C/5, C/10, C/20 and combination. And dynamic behaviors of charge and discharge were measured. The voltage curves from the experiment and simulation were in good agreement. Based on the modeling, the distributions of the electrical potentials of the solid and solution phases, and the current density within the electrodes could be predicted as a function of charge and discharge time.