DOI QR코드

DOI QR Code

Study on Ohmic Resistance of Polymer Electrolyte Fuel Cells Using Current Interruption Method

전류차단법을 이용한 고분자전해질 연료전지의 오믹 저항 연구

  • Ji, Sanghoon (Graduate School of Covergence and Science Technology, Seoul National University) ;
  • Hwang, Yong-Sheen (Fuel Cell Vehicle Team, Hyundai Motor Company) ;
  • Lee, Yoon Ho (School of Mechanical and Aerospace Engineering, Seoul National University) ;
  • Park, Taehyun (School of Mechanical and Aerospace Engineering, Seoul National University) ;
  • Paek, Jun Yeol (School of Mechanical and Aerospace Engineering, Seoul National University) ;
  • Chang, Ikwhang (Graduate School of Covergence and Science Technology, Seoul National University) ;
  • Cha, Suk Won (School of Mechanical and Aerospace Engineering, Seoul National University)
  • 지상훈 (서울대학교 융합과학기술대학원) ;
  • 황용신 (현대자동차 연료전지개발 3 팀) ;
  • 이윤호 (서울대학교 기계항공공학부) ;
  • 박태현 (서울대학교 기계항공공학부) ;
  • 백준열 (서울대학교 기계항공공학부) ;
  • 장익황 (서울대학교 융합과학기술대학원) ;
  • 차석원 (서울대학교 기계항공공학부)
  • Received : 2012.08.27
  • Accepted : 2012.12.05
  • Published : 2013.04.01

Abstract

The current interruption method is considered to be an efficient way of measuring the resistance of a fuel cell. In this study, the ohmic area specific resistances (ASRs) of polymer electrolyte fuel cells with different types of bipolar plates were evaluated using the current interruption method. The ohmic ASRs of both a fuel cell with graphite bipolar plates and a fuel cell with graphite foil-based assembled bipolar plates decreased as the current density increased. On the other hand, with increasing cell temperature, the ohmic ASRs of a fuel cell with graphite bipolar plates were decreased by a reduction in the proton transport resistance through the membrane, and the ohmic ASRs of a fuel cell with graphite foil-based assembled bipolar plates were increased by the differences in thermal expansion between different components of the bipolar plates.

전류차단법은 연료전지의 저항을 측정하기 위한 효율적인 방법으로 고려된다. 본 연구에서는 서로 다른 종류의 분리판을 가지는 고분자전해질 연료지의 오믹 저항을 전류차단법을 통해 평가하였다. 그라파이트 판을 분리판으로 가지는 연료전지와 그라파이트 포일 기반의 조립형 분리판을 가지는 연료전지는 모두 전류밀도가 증가함에 따라 오믹 면적비저항이 감소하였다. 반면, 그라파이트 판을 분리판으로 가지는 연료전지의 오믹 면적비저항은 셀 온도가 증가함에 따라 멤브레인을 통한 수소 이온전달 저항이 낮아져 감소하는 경향을 보였고, 그라파이트 포일 기반의 조립형 분리판을 가지는 연료전지의 오믹 면적 비저항은 분리판 요소들의 열팽창 차이로 인해 증가하는 경향을 보여주었다.

Keywords

References

  1. Ju, H. C. and Wang, C. -Y., 2008, "Effects of Coolant Channels on Large-Scale Polymer Electrolyte Fuel Cells (PEMFCs)," International Journal of Automotive Technology, Vol. 9, No. 2, pp 225-232. https://doi.org/10.1007/s12239-008-0029-2
  2. Um, S. and Wang, C. -Y., 2004, "Three- Dimensional Analysis of Transport and Electrochemical Reactions in Polymer Electrolyte Fuel Cells," Journal of Power Sources, Vol. 125, No. 1, pp 40-51. https://doi.org/10.1016/j.jpowsour.2003.07.007
  3. Ji, S., Hwang, Y. -S., Choi, J. W., Lee, D. Y., Park, J., Jang, J. H., Kim, M. S. and Cha, S. W., 2010, "Experimental Study of Performance of PEMFC Operated in Dead-End Mode," Trans. Korean Soc. Mech. Eng. B, Vol. 34, No. 6, pp. 643-648. https://doi.org/10.3795/KSME-B.2010.34.6.643
  4. Wu, J., Yuan, X. Z., Wang, H., Blanco, M. and Martin, J. J., Zhang, J., 2008, "Diagnostic Tools in PEM Fuel Cell Research: Part I Electrochemical Techniques," International Journal of Hydrogen Energy, Vol. 33, No. 6, pp 1736-1746.
  5. Cooper, K. R. and Smith, M., 2006, "Electrical Test Methods for on-Line Fuel Cell Ohmic Resistance Measurement," Journal of Power Sources, Vol. 160, No. 2, pp 67-79.
  6. Mennola, T., Mikkola, M., Noponen, M., Hottinen, T. and Lund, P., 2002, "Measurement of Ohmic Voltage Losses in Individual Cells of a PEMFC Stack," Journal of Power Sources, Vol. 112, No. 1, pp 261-272. https://doi.org/10.1016/S0378-7753(02)00391-9
  7. Springer, T. E., Zawodzinski, T. A., Wilson, M. S. and Golfesfeld, S., 1996, "Characterization of Polymer Electrolyte Fuel Cells Using AC Impedance Spectroscopy," Journal of the Electrochemical Society, Vol. 143, No. 2, pp 587-599. https://doi.org/10.1149/1.1836485
  8. O'Hayre, R., Cha, S. W., Colella, W. and Prinz, F. B., 2005, "Fuel Cell Fundamentals," Wiley, New York.
  9. Kim, S. H., Cha, H. Y, Miesse, C. M., Jang, J. H., Oh, Y. S. and Cha, S. W., 2009, "Air-Breathing Miniature Planar Stack Using the Flexible Printed Circuit Board as a Current Collector," International Journal of Hydrogen Energy, Vol. 34, No. 1, pp 459-466. https://doi.org/10.1016/j.ijhydene.2008.09.088
  10. Spernjak, D., Prasad, A. K., Advani, S. G., 2007, "Experimental Investigation of Liquid Water Formation and Transport in a Transparent Single- Serpentine PEM Fuel Cell," Journal of Power Sources, Vol. 170, pp 334-344. https://doi.org/10.1016/j.jpowsour.2007.04.020
  11. Mennola, T., Mikkola, M., Noponen, M., Hottinen, T. and Lund, P., 2002, "Measurement of Ohmic Voltage Losses in Individual Cells of a PEMFC Stack," Journal of Power Sources, Vol. 112, No. 1, pp 261-272. https://doi.org/10.1016/S0378-7753(02)00391-9
  12. Zhou, P., Wu, C. W. and Ma, G. J., 2006, "Contact Resistance Prediction and Structure Optimization of Bipolar Plates," Journal of Power Sources, Vol. 159, No. 2, pp 1115-1122. https://doi.org/10.1016/j.jpowsour.2005.12.080