• Title/Summary/Keyword: 양극판

Search Result 50, Processing Time 0.023 seconds

그라핀이 코팅된 저탄소강의 고분자전해질 연료전지 양극판으로서의 적용

  • Nam, Dae-Geun;Kim, Jeong-Su;Park, Yeong-Do;O, Won-Tae;Jo, Hyeong-Ho
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2011.05a
    • /
    • pp.44.2-44.2
    • /
    • 2011
  • 고분자 전해질 연료전지는 다른 연료전지에 비해 작동온도가 낮고 전류밀도 및 출력밀도가 높으며 시동시간이 짧아서 다양한 분야에 응용이 가능할 것으로 기대된다. 그 중 양극판은 가격비와 중량비가 높아 부품 가격 및 중량을 낮출 경우 파급 효과가 높은 것으로 예상된다. 본 연구에서는 일반적으로 사용하고 있는 스테인리스강보다 가격이 저렴한 저탄소강을 모재로 이용하였다. 저탄소강은 자체로 내식성을 가지지 못하므로, 최근에 차세대 신소재로 각광을 받고 있는 그라핀(graphene)을 전기분무(electro spray coating)법으로 코팅하여 저탄소강의 내식성을 향상시키고자 하였다. 그라핀은 에탄올을 용매로 사용하여 분산하였으며, 분산제로 소량의 다이페닐다이에톡시실란(diphenyldiethoxysilane)을 첨가하여 코팅용액을 제작하였다. 코팅공정은 5~15 kV의 전압을 가하여 1시간동안 코팅을 진행하였으며, 그라핀-저탄소강의 미세구조를 주사전자현미경과 광학현미경을 통하여 관찰하였다. 또한 X-선 회절분석법을 이용하여 그라핀의 결정구조를 분석하였다. 한편 스택의 내부와 유사한 산화성 분위기를 모사하기 위해 $80^{\circ}C$의 0.1N $H_2SO_4$+2ppm $F^-$ 용액에서 내식성 실험을 수행하였고 면간접촉저항을 측정하였다. 그라핀이 코팅된 저탄소강 시편은 고분자 전해질 연료전지 양극판의 요구조건을 만족하였으며, 연료전지 양극판으로서의 사용가능성을 확인하였다.

  • PDF

HIGH RESOLUTION DELAY LINE READOUT ELECTRONOCS FOR THE TIME 2-D POSITION SENSITIVE DETECTOR (원자외선 분광기의 2차원 위치검출을 위한 고 분해능 지연선 검출회로)

  • 이진근;신종호;민경욱;남욱원;공경남
    • Journal of Astronomy and Space Sciences
    • /
    • v.19 no.1
    • /
    • pp.57-66
    • /
    • 2002
  • We designed two-dimensional position sensitive MCP(mixt.ochannel plate) detector for FIMS, which is composed of MCP, delay line anode, and delay line readout elec-tronics. And also, we fabricated and tested for the operation stability and resolution of the delay line readout electronic system. An anode simulator and a stimulator were used instead of the real MCP and anode during the test to see the electronic contribution to the resolution. The readout electronics was operated stably and showed time resolution of about 560 ps for the spectral direction and about 100 ps for the image direction respectively.

Review of Carbon Materials Used in Fuel cell Components (연료 전지 구성요소에 사용되는 탄소 재료에 관한 고찰)

  • Jang, Min-Hyeok;Kang, Yu-Jin;Jo, Hyung-Kun;Park, Cho-I;Sim, Hye-Soo;Park, Joo-Il
    • Journal of the Korea Convergence Society
    • /
    • v.12 no.2
    • /
    • pp.193-200
    • /
    • 2021
  • As the degree of environmental pollution caused by the use of fossil fuels intensifies, many countries continue to invest in the development of alternative energy. PEMFC, one of the alternative energies, consists of four main components: bipolor plate, electrolyte, gas diffusion layer, and electrode. Among them, bipolor plate, the gas diffusion layer, and electrode are generally manufactured using carbon materials such as carbon black and carbon fiber. These carbon materials are expensive in manufacturing process or have disadvantages such as corrosion, and research is being conducted in many fields to improve this. This paper collects several research results conducted to improve the shortcomings of these three components and examines the trends of PEMFC by grasping what problems have been and how they have improved.

Interpretation of Corrosion Mechanism on Anode side Separator for MCFC (용융탄산염 연료전지에서 양극측 분리판의 부식기구 해석)

  • Park, Hyeong-Ho;Lee, Min-Ho;Lee, Kyu-Taek
    • Korean Journal of Materials Research
    • /
    • v.8 no.6
    • /
    • pp.571-576
    • /
    • 1998
  • This study was carried out for investigating the corrosion behaviors, corrosion mechanisms, and behaviors of elements on a separator for a molten carbonate fuel cell under both the electrolyte and anode side environment. A 310S austenitic stainless steel was used as the separator material. Corrosion proceeded via three steps; the formation step of corrosion product in which rapid corrosion takes place until stable corrosion product is formed after the beginning of corrosion, the protection step against corrosion until breakaway occurs after the formation step of stable corrosion product and the advancing step of corrosion after the breakaway. From the standpoint of the behavior of the elements in the specimen, Fe and Cr, Ni were enriched in the region of corrosion product, in the region of corrosion protection, and at the Cr-deplete zone, respectively. With respect to corrosion mechanism, ionization of electrolyte at the anode side was the main corrosion mechanism, and the final corrosion products were $LiFeO_2$ and $LiCrO_2$ at the anode side.

  • PDF

Well-Aligned Nano-Sized Pores Using Aluminum Thin Film Fabricated by Aluminum Anodized Oxidation Method (알루미늄 박막을 이용하여 양극산화법으로 제작한 규칙적으로 정렬된 미세기공)

  • Han, Ga-Ram;Yun, Tae-Uk;Kang, Min-Ki;NamGung, Hyun-Min;Kim, Chang-Kyo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2010.06a
    • /
    • pp.207-207
    • /
    • 2010
  • 알루미늄 양극산화 기술은 저가로 공정이 가능하고, 경제적이며 규칙적인 배열의 나노 미터 크기의 미세기공을 형성할 수 있다는 장점을 가지고 있다. 인가전압, 양극산화 용액의 종류, 용액의 농도 및 온도 등의 양극산화 조건을 변화시킴에 따라 나노 기공의 직경 및 길이, 밀도 조절이 용이하다. 알루미늄 판 (aluminum plate)을 이용한 양극산화 기술은 상대적으로 많이 알려져 있으나 알루미늄 박막을 이용한 양극산화기술은 아직도 확립되어 있지 않다. 본 실험에서는 실리콘 기판에 Al을 $5000{\AA}$$8000{\AA}$으로 증착시켜서 기판으로 이용하였다. 아주 얇은 두께의 Al은 작은 변화에도 민감하게 반응하기 때문에 공정 변수인 온도와 전압의 정밀한 제어가 되어야 나노 기공의 크기 조절이 가능한 것을 확인하였다.

  • PDF

Disinfection of harmful organism for ballast water using electrolytic treatment system (전해처리를 통한 밸러스트수의 유해생물 살균처리)

  • 박상호;김인수
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2004.04a
    • /
    • pp.227-232
    • /
    • 2004
  • Ballast water from ship harmful microorganism sterilized use of electrolytic sterilization system. The experimental methods were use of peristaltic flow pump upward on electrode pole. Due to reaction time, HRT were unlike microorganism on flow rate. In electrolysis, dioxide iridium coated titanium(Ti/IrO$_2$) and stainless steel plate were used for anode and cathode respectively. Current density controls make use of D.C Power supply on 250V 100Amper. Experimental use of current density between 0.1 and 0.5A was able to disinfect microorganism at 5 seconds by the reaction time. This study shows that the electrolyzed water has a potential for the sterilization of ballast water.

  • PDF

Failure Mode of the Positive Plate on Charging Voltage in Gel Type Valve Regulated Lead Acid Batteries (충전전압에 따른 겔형 VRLA전지 양극판의 파손방식)

  • Oh Sanghyub;Kim Myungsoo;Lee Heung Lark
    • Journal of the Korean Electrochemical Society
    • /
    • v.3 no.2
    • /
    • pp.90-95
    • /
    • 2000
  • Cycle life test was carried out to evaluate the failure modes of the gel type nth batteries at $C_5$ currents and $100\%$ DOD. When the batteries were charged at constant voltage of 2.40 V and 2.50 Vi respectively, cycle lift was over 1,000 cycles. The batteries lost 426.4 g and 391.2 g of electrolyte far each case after the weight measurement. The battery charged at 2.50 V was shown to have a better cyclic performance than charged at 2.40 V, and the amounts of electrolyte loss was proportional to charge factor. After cycle test, the micro-structure of positive active material was completely changed and the corrosion layer of positive grid was about $50{\mu}m$. Failure mode of the positive plate of the gel type battery was a shedding of the positive active material, and the cause of discharge capacity decrease was found to be a electrolyte loss.

Electrochemical Performance of High-Voltage Lithium-Ion Batteries with NCM Cathode Varying the Thickness of Coating Layer by Atomic Layer Deposition (Atomic Layer Deposition의 두께 변화에 따른 NCM 양극에서의 고전압 리튬 이온 전지의 전기화학적 특성 평가)

  • Im, Jinsol;Ahn, Jinhyeok;Kim, Jungmin;Sung, Shi-Joon;Cho, Kuk Young
    • Journal of the Korean Electrochemical Society
    • /
    • v.22 no.2
    • /
    • pp.60-68
    • /
    • 2019
  • High-voltage operation of the lithium ion battery is one of the advantageous approaches to obtain high energy capacity without changing the conventional cell components and structure. However, operating at harsh condition inevitably results in severe side reactions at the electrode surface and structural disintegration of active material particles. Herein we coated layers composed of $Al_2O_3$ and ZnO on the electrode based on NCM using atomic layer deposition (ALD). Thicker layers of novel Al-doped ZnO (AZO) coating compared to conventional ALD coated layers are prepared. Cathode based on NCM with the varying AZO coating thickness are fabricated and used for coin cell assembly. Effect of ALD coating thickness on the charge-discharge cycle behavior obtained at high-voltage operation was investigated.

Factors Associated with Personal and Social Performance Status in Patients with Bipolar Disorder (양극성 장애 환자의 개인적·사회적 기능 상태에 대한 관련 요인)

  • Kim, Min-Jung;Lee, Jeon-Ho;Youn, HyunChul;Jeong, Hyun-Ghang;Kim, Seung-Hyun
    • Sleep Medicine and Psychophysiology
    • /
    • v.26 no.1
    • /
    • pp.33-43
    • /
    • 2019
  • Objectives: Bipolar disorder is characterized by repetitive relapses that result in psychosocial dysfunctions. The functioning of bipolar disorder patients is related to the severity of symptoms, quality of sleep, drug compliance, and social support. The purpose of this study was to investigate the association between sociodemographic and clinical factors and functional status in bipolar disorder patients. Methods: A total of 52 bipolar disorder patients participated in the study. The following scales were utilized: Korean version of personal and social performance scale (K-PSP), Korean version of Hamilton rating scale for depression (K-HDRS), Korean version of young mania rating scale (K-YMRS), Korean version of pittsburgh sleep quality index (PSQI-K), Korean version of drug attitude inventory (K-DAI), mood disorders insight scale (MDIS), and multidimensional scale of perceived social support (MSPSS). Results: The K-PSP score showed a negative relationship with K-HDRS score (r = -0.387, p = 0.005), but not with K-YMRS score (r = -0.205, p = 0.145). The K-PSP score showed a negative relationship with global PSQI-K score (r = -0.378, p = 0.005) and overall sleep quality (r = -0.353, p = 0.010). The K-PSP scores were positively associated with the KDAI score (r = 0.409, p = 0.003) and MSPSS score (r = 0.334, p = 0.015). The predictive factors for K-PSP were overall sleep quality and social support from family. Conclusion: Our study showed that depressive symptoms were related to overall function in bipolar disorder. Also, our study suggested that improving sleep quality is important in maintaining functional status. Appropriate social support and positive perception toward the drug may lead to the higher level of functioning. This study is meaningful in that the functional status of bipolar disorder patients is analyzed in a multivariate manner in relation to various variables in psychosocial aspects.

Removing High Concentration Nitrogen by Electrolysis (전기분해에 의한 고농도 질소 제거의 특성)

  • Gil, Dae-Soo;Lee, Byung-Hun;Choi, Hae-Kyoung;Kwon, Dong-Min
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.22 no.2
    • /
    • pp.265-277
    • /
    • 2000
  • Laboratory experiments were conducted to investigate characteristics for removing ammonia-nitrogens by electrolysis methods. A stainless steel plate is used as the cathode and either $IrO_2{\backslash}Ti$ plate serves as the anode. Experiments were conducted to examine the effects of the operating conditions, such as the current density, retention time, electrode gap, $Cl^-/NH_4{^+}-N$ on the $NH_4{^+}-N$ removal efficiency. Possible optimum range for these operating variables are experimentally determined. The $NH_4{^+}-N$ removal efficiencies between plate type anode and net type anode were about same effect, but electrolytic power using net type anode is low than plate type anode. The $Cl^-/NH_4{^+}-N$ ratio was about $20.0kgCl^-/kgNH_4{^+}-N$ when $NH_4{^+}-N$ removal obtained 73 %, $Cl^-/NH_4{^+}-N$ ratio needs $27.6kgCl^-/kgNH_4{^+}-N$ so as to $NH_4{^+}-N$ completely remove. The removal efficiency of $NH_4{^+}-N$ increase with current density, retention time and $Cl^-/NH_4{^+}-N$ ratio, but decreased with increasing electrode gap. The relationship of operating conditions and $NH_4{^+}-N$ removal efficiencies are $$NH_4{^+}-N_{re}(%)=14.5364(Current\;density)^{0.7093}{\times}(HRT)^{1.0060}{\times}(Gap)^{-0.9926}{\times}(Cl^-/NH_4{^+}-N)^{1.0024}$$ With adding COD or/and alkalinity, relationships are $$NH_4{^+}-N_{re}(%)=9.8408(Current\;density)^{0.6232}{\times}(HRT)^{1.0534}$$ There existed a competition between the removals for $NH_4{^+}-N$ and $COD_{Cr}$ during electrolysis, the removal of $NH_4{^+}-N$ was shown to be dominant. $NH_4{^+}-N$ removal was high as addition of glucose and alkalinity.

  • PDF