DOI QR코드

DOI QR Code

Modeling of the dynamic behavior of a 12-V automotive lead-acid battery

12V 차량용 납축전지의 동적 거동 모델링

  • 김성태 (아주대학교 화학공학과) ;
  • 이정빈 (아주대학교 에너지시스템학과) ;
  • 김의성 (아주대학교 에너지시스템학과) ;
  • 신치범 (아주대학교 에너지시스템학과)
  • Received : 2012.05.18
  • Accepted : 2013.06.17
  • Published : 2013.06.30

Abstract

For the optimal design of the vehicle electric system, it is important to have a reliable modeling tool to predict the dynamic behavior of the automotive battery. In this work, a one-dimensional modeling was carried-out to predict the dynamic behaviors of a 12-V automotive lead-acid battery. The model accounted for electrochemical kinetics and ionic mass transfer in a battery cell. In order to validate the modeling, modeling results were compared with the experiment data of the dynamic behaviors of the lead-acid batteries of two different capacities that were mounted on the automobiles manufactured by Hyundai Motor Company. The discharge behaviors were measured with various discharge rates of C/3, C/5, C/10, C/20 and combination. And dynamic behaviors of charge and discharge were measured. The voltage curves from the experiment and simulation were in good agreement. Based on the modeling, the distributions of the electrical potentials of the solid and solution phases, and the current density within the electrodes could be predicted as a function of charge and discharge time.

차량 전기 시스템의 최적 설계를 위해 납축전지의 동적 거동을 예측하는 것은 중요하다. 동적 거동을 예측하기 위해서는 믿을만한 모델링 프로그램이 필요하다. 본 연구에서는 1차원 모델링을 통하여 12V 차량용 납축전지의 동적거동을 예측하였다. 수학적 모델에는 전기화학반응과 전지 내부에서 일어나는 이온 물질전달을 포함하였다. 모델링을 검증하기 위해 용량이 다른 2개(68Ah, 90Ah)의 납축전지 모델링 결과를 실험 결과와 비교하였다. 본 연구에서 사용한 납축전지는 현대자동차 차량에 적용되는 납축전지를 사용하였다. 방전 실험의 조건은 C/3, C/5, C/10, C/20의 방전율을 조합하여 진행하였다. 그리고 충전과 방전이 연속적으로 일어나는 동적 실험을 수행하였다. 모델링 결과와 실험 결과를 비교하여 보면 모델링 결과가 실험결과를 잘 예측하는 것을 볼 수 있다. 모델링은 고체상과 액체상에서의 전위분포와 전극 내에서 전류밀도에 근거한 모델링은 충 방전 시간의 함수로 예측할 수 있다.

Keywords

References

  1. Guo, Y.; Groiss, R.; Doring, H.; Garche J. Rate-Determining Step Investigations of Oxidation Processes at the Positive Plate during Pulse Charge of Valve-Regulated Lead-Acid Batteries. Journal of The Electrochemical Society, 1995, 146, 3949-3957.
  2. Nguyen, T. V.; White, R. E. A Two-Dimensional Mathematical Model of a Porous Lead Dioxide Electrode in a Lead-Acid Cell. Journal of The Electrochemical Society, 1988, 135, 278-285. https://doi.org/10.1149/1.2095601
  3. Dimpault-Darcy, E.; Groiss, R.; Doring, H.; Garche J. Rate-Determining Step Investigations of Oxidation Processes at the Positive Plate during Pulse Charge of Valve-Regulated Lead-Acid Batteries. Journal of The Electrochemical Society, 1995, 146, 3949-3957.
  4. Huang. H.; Nguyen, T. V. A Two-Dimensional Transient Thermal Model for Valve-Regulated Lead-Acid Batteries under Overcharge. Journal of The Electrochemical Society, 1997, 144, 2062-2068. https://doi.org/10.1149/1.1837742
  5. Bernardi, D. M.; Carpenter, M. L. A Mathematical Model of the Oxygen- Recombination Lead-Acid Cell. Journal of The Electrochemical Society, 1995, 142, 2631-2642. https://doi.org/10.1149/1.2050066
  6. Newman, J.; Tiedemann, W. Simulation of Recombinant Lead-Acid Batteries. Journal of The Electrochemical Society, 1997, 144, 3081-3091. https://doi.org/10.1149/1.1837963
  7. Tenno, A.; Tenno, R.; Suntio, T. Evaluation of VRLA battery under overcharging: model for battery testing. Journal of Power Source, 2002, 111, 65-82. https://doi.org/10.1016/S0378-7753(02)00276-8
  8. Srinivasan, V.; Wang, G. Q.; Wang, C. Y. Mathematical Modeling of Current-Interrupt and Pulse Operation of Valve-Regulated Lead Acid Cells. Journal of The Electrochemical Society, 2001, 150, A316-A325.
  9. Esfahanian, V.; Torabi, F.; Mosahebi A. An innovative computational algorithm for simulation of lead-acid batteries. Journal of Power Source, 2008, 176, 373-380. https://doi.org/10.1016/j.jpowsour.2007.10.052
  10. Esfahanian, V.; Torabi, F. Numerical simulation of lead-acid batteries using Keller-Box method. Journal of Power Source, 2006, 158, 949-952. https://doi.org/10.1016/j.jpowsour.2005.11.031