• 제목/요약/키워드: Hysteresis modeling

검색결과 151건 처리시간 0.033초

Hysterersis Compensation in SMA Actuators Through Numerical Inverse Preisach Model Implementation

  • Kha, Nguyen-Bao;Ahn, Kyoung-Kwan
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2005년도 ICCAS
    • /
    • pp.2048-2053
    • /
    • 2005
  • The aim of this paper is to compensate hysteresis phenomena in Shape Memory Alloy (SMA) actuators by using numerical inverse Preisach model. This is used to design a controller that correct hysteresis effects and improve accuracy for the displacement of SMA actuators. Firstly, hysteresis is identified by numerical Preisach model implementation. The geometrical interpretation from first order transition curves is used for hysteresis modeling. Secondly, the inverse Preisach model is formulated and incorporated in open-loop control system in order to obtain desired input-output relationship with hysteresis reducing. The experimental results for hysteresis compensation by using this method are also shown in this paper.

  • PDF

히스테리시스 앞먹임과 신경회로망을 이용한 압전 구동기의 정밀 위치제어 (Precision Position Control of Piezoelectric Actuator Using Feedforward Hysteresis Compensation and Neural Network)

  • 김형석;이수희;안경관;이병룡
    • 한국정밀공학회지
    • /
    • 제22권7호
    • /
    • pp.94-101
    • /
    • 2005
  • This work proposes a new method for describing the hysteresis non-linearity of a piezoelectric actuator. The hysteresis behaviour of piezoelectric actuators, including the minor loop trajectory, are modeled by geometrical relationship between a reference major loop and its minor loops. This hysteresis model is transformed into inverse hysteresis model in order to output compensated voltage with regard to the given input displacement. A feedforward neural network, which is trained by a feedback PID control module, is incorporated to the inverse hysteresis model to compensate unknown dynamics of the piezoelectric system. To show the feasibility of the proposed feedforward-feedback controller, some experiments have been carried out and the tracking performance was compared to that of simple PTD controller.

Precision Position Control of Piezoactuator Using Inverse Hysteresis Model and PID control

  • Kim, jung yong;Lee, byung ryong;Yang soon yong;Ahn kyung kwan
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2001년도 ICCAS
    • /
    • pp.66.3-66
    • /
    • 2001
  • A piezoelectric actuator yields hysteresis effect due to its composed ferroelectric. Hysteresis nonlinearty is neglected when a piezoelectric actuator moves with short stroke. However when it moves with long stroke and high frequency, the hysteresis nonlinearty can not be neglected. The hysteresis nonlinearty of piezoelectric actuator degrades the control performance in precision position control. In this paper, in order to improve the control performance of piezoelectric actuator, an inverse modeling scheme is proposed to compensate the hysteresis nonlinearty problem. And feedforward - feedback controller is proposed to give a good tracking performance. The Feedforward controller is inverse hysteresis model ,and PID control is used ...

  • PDF

철손을 고려한 동기형 릴럭턴스 전동기의 유한요소해석 (Finite Element Analysis of Synchronous Reluctance Motor Considering Iron Core Loss)

  • 이중호;현동석
    • 대한전기학회논문지:전기기기및에너지변환시스템부문B
    • /
    • 제48권4호
    • /
    • pp.187-193
    • /
    • 1999
  • This study investigates the hysteresis phenomena of a Synchronous Reluctance Motor (SynRM) using coupled FEM and Preisach modeling. Preisach's model, which allows accurate prediction of hysteresis, is adopted in this procedure to provide a nonlinear solution. the computer simulation and experimental result for the i$\lambda$loci show the propriety of the proposed method.

  • PDF

전기강판의 벡터 자기특성 모델링을 위한 개선된 E&S Vector Hysteresis Model (Improved E&S Vector Hysteresis Model for the Precise Modeling of Vector Magnetic Properties of Electrical Steel Sheet)

  • 송민호;윤희성;고창섭
    • 전기학회논문지
    • /
    • 제60권9호
    • /
    • pp.1684-1692
    • /
    • 2011
  • Recently, several vector hysteresis models such as vector Preisach, vector Jiles-Atherton and dynamic E&S model have been proposed to describe vector magnetic properties of electrical steel sheets. However, it is still difficult to find an adequate vector hysteresis model in finite element application for both the Non-oriented and Grain-oriented electrical steel sheets under alternating and rotating field conditions. In this paper, an improved E&S vector hysteresis model is suggested to describe the vector magnetic properties of both Non-oriented and Grain-oriented electrical steel sheets under various magnetic field conditions including alternating and rotating magnetic field conditions. The validity of the proposed model is tested through comparisons with the experimental results under various magnetic field conditions.

Preisach모델을 이용한 MR 유체의 히스테리시스 특성 고찰 (Hysteresis Investigation of Magnetorheological Fluid Using Preisach Model)

  • 한영민;임계현;최승복
    • 한국소음진동공학회논문집
    • /
    • 제16권1호
    • /
    • pp.3-11
    • /
    • 2006
  • This paper presents a new approach for hysteresis modeling of a magnetorheological (MR) fluid. The field-dependent hysteresis of MR fluid is investigated using the Preisach model. The commercial MR product (MRF-132LD, Lord Corporation) is employed. Its field-dependent shear stress is then obtained using a rheometer (MCR 300, Physica). In order to show the applicability of the Preisach model to the MR fluid, two significant properties; the minor loop property and the wiping-out. property are experimentally examined. Subsequently, the Preisach model for the MR fluid is identified using experimental first order descending (FOD) curves in discrete manner. The effectiveness of the identified hysteresis model is verified in the time domain by comparing the predicted field-dependent shear stress with the measured one. In addition, the hysteresis model proposed in this work is compared to Bingham model.

자동차 수동 변속기 클러치 시스템의 답력 이력 특성 예측 모델 (Automotive Manual Transmission Clutch System Modeling for Foot Effort Hysteresis Characteristics Prediction)

  • 이병수
    • 한국자동차공학회논문집
    • /
    • 제16권5호
    • /
    • pp.164-170
    • /
    • 2008
  • A typical clutch system for automotive manual transmissions transfers hydraulic pressure generated by driver's pedal manipulation to the clutch diaphragm spring. The foot effort history during the period of push is different than the period of the clutch pedal's return. The effort or load difference is called clutch foot effort hysteresis. It is known that the hysteresis is caused by friction. The frictional force and moment are produced between various component contact points such as between the rubber seal and the inner wall inside the hydraulic cylinder and between the diaphragm spring and the pressure plate, etc. Understanding the clutch pedal foot effort hysteresis is essential for a clutch release system design and analysis. The dynamic model for a clutch release system is developed for the foot effort hysteresis prediction and a simulation analysis is performed to propose a tool for analysing a clutch system.

이송자벌레를 위한 압전소자의 모델링 및 운동제어 : 2. 슬라이딩 모드법에 의한 이송자벌레의 운동제어 (Modeling and Motion Control of Piezoelectric Actuator for the Inchworm : Part 2. Motion Control of Inchworm Using Sliding Mode Method)

  • 김영식;박은철;김인수
    • 한국소음진동공학회논문집
    • /
    • 제15권7호
    • /
    • pp.878-884
    • /
    • 2005
  • This paper presents an algorithm for the precision motion control based on the dynamic characteristics of piezoelectric actuators in the inchworm. The dynamic characteristics are identified by the frequency domain modeling technique using the experimental data. For the motion control, the hysteresis behavior is compensated by the inverse hysteresis model. The dynamic stiffness of an inchworm is generally low compared to its driving condition, so mechanical vibration may degenerate the motion accuracy of the inchworm. The Sliding mode controller and the Kalman filter are designed for motion control of the inch-worm.

Finite Element Study of Ferroresonance in single-phase Transformers Considering Magnetic Hysteresis

  • Beyranvand, Morteza Mikhak;Rezaeealam, Behrooz
    • Journal of Magnetics
    • /
    • 제22권2호
    • /
    • pp.196-202
    • /
    • 2017
  • The occurrence of ferroresonance in electrical systems including nonlinear inductors such as transformers will bring a lot of malicious damages. The intense ferromagnetic saturation of the iron core is the most influential factor in ferroresonance that makes nonsinusoidal current and voltage. So the nonlinear behavior modeling of the magnetic core is the most important challenge in the study of ferroresonance. In this paper, the ferroresonance phenomenon is investigated in a single phase transformer using the finite element method and considering the hysteresis loop. Jiles-Atherton (JA) inverse vector model is used for modeling the hysteresis loop, which provides the accurate nonlinear model of the transformer core. The steady-state analysis of ferroresonance is done while considering different capacitors in series with the no-load transformer. The accurate results from copper losses and iron losses are extracted as the most important specifications of transformers. The validity of the simulation results is confirmed by the corresponding experimental measurements.

입력주파수 변화특성을 고려한 압전구동기의 정밀위치제어 (Precise position control of piezoelectric actuators considering input frequency variance)

  • 송재욱;김호상;이효정
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1996년도 한국자동제어학술회의논문집(국내학술편); 포항공과대학교, 포항; 24-26 Oct. 1996
    • /
    • pp.1052-1055
    • /
    • 1996
  • Piezoelectric actuator is widely used in precision positioning applications due to its excellent positioning resolution. However, serious hysteresis nonlinearity of the actuator deteriorates its precise positioning capability. Evenworse, its hysteresis nonlinearity changes as the actuator input frequency varies. In this study, a simple feedforward scheme is proposed and tested through experiments for precision position control when the variance of the system input frequency is significant.

  • PDF