DOI QR코드

DOI QR Code

Hysteresis Investigation of Magnetorheological Fluid Using Preisach Model

Preisach모델을 이용한 MR 유체의 히스테리시스 특성 고찰

  • 한영민 (인하대학교 기계공학부) ;
  • 임계현 (인하대학교 대학원 기계공학부) ;
  • 최승복 (인하대학교 대학원 기계공학과)
  • Published : 2006.01.01

Abstract

This paper presents a new approach for hysteresis modeling of a magnetorheological (MR) fluid. The field-dependent hysteresis of MR fluid is investigated using the Preisach model. The commercial MR product (MRF-132LD, Lord Corporation) is employed. Its field-dependent shear stress is then obtained using a rheometer (MCR 300, Physica). In order to show the applicability of the Preisach model to the MR fluid, two significant properties; the minor loop property and the wiping-out. property are experimentally examined. Subsequently, the Preisach model for the MR fluid is identified using experimental first order descending (FOD) curves in discrete manner. The effectiveness of the identified hysteresis model is verified in the time domain by comparing the predicted field-dependent shear stress with the measured one. In addition, the hysteresis model proposed in this work is compared to Bingham model.

Keywords

References

  1. Choi, S. B., Hong, S. R., Cheong, C. C. and Park, Y. K., 1999, Comparison of Field-controlled Characteristics Between ER and MR Clutches, Journal of Intelligent Material Systems and Structures, Vol. 10, No. 8, pp. 615-619 https://doi.org/10.1106/217G-CEUN-Q710-AB60
  2. Shames, I. H. and Cozzarelli, F. A., 1992, Elastic and Inelastic Stress Analysis, Prentice Hall, Englewood Cliffs, New Jersey, pp. 313-315
  3. Gorbet, R. B., Wang, D. W. L. and Morris, K. A., 1998, Preisach Model Identification of a Two-wire SMA Actuator, Proceedings of the IEEE International Conference on Robotics & Automation, Leuben, Belgium, pp. 2161-2167
  4. Ge, P. and Jouaneh, M., 1997, Generalized Preisach Model for Hysteresis Nonlinearity of Piezoceramic Actuators, Precision Engineering, Vol. 20, pp. 99-111 https://doi.org/10.1016/S0141-6359(97)00014-7
  5. Mittal, S. and Menq, C. H., 2000, Hysteresis Compensation in Electromagnetic Actuators Through Preisach Model Inversion, IEEE/ASME Transactions on Mechatronics, Vol.5, No.4, pp.394-409 https://doi.org/10.1109/3516.891051
  6. Choi, S. B. and Lee, C. H., 1997, Force Tracking Control of a Flexible Gripper Driven by a Piezoceramic Actuator, ASME Journal of Dynamic Systems, Measurement, and Control, Vol. 119, No.3, pp. 439-446 https://doi.org/10.1115/1.2801276
  7. Mayergoyz, I. D., 1991, Mathematical Models of Hysteresis, Springer-Verlag, New York
  8. Han, Y. M., Lee, H. G., Choi, S. B. and Choi, H. J., 2002, 'Investigation on Temperature-dependent Hysteresis of Electro-rheological Fluid Using Preisach Model.' Transactions of the KSNVE, Vol.12, No. 8, pp. 648-656 https://doi.org/10.5050/KSNVN.2002.12.8.648
  9. Hughes, D. and Wen, J. T., 1994, Preisach Modeling of Piezoceramic and Shape Memory Alloy Hysteresis, Proceedings of the IEEE Control Conference on Application, Albany, New York, pp. 1086-1091
  10. Stanway, R., Sproston, J. L. and Stevens, N. G., 1987, Non-Linear Modeling of an Electro-Rheological Vibration Damper, Journal of Electrostatics, Vol. 20, No. 2, pp. 167-184 https://doi.org/10.1016/0304-3886(87)90056-8
  11. Spencer, B. F. Jr., Dyke, S. J., Sain, M. K. and Carlson, J. D., 1997, Phenomenological Model for a Magnetorheological Dampe., Journal of Engineering Mechanics, ASCE, Vol. 123, No. 3, pp. 230-238 https://doi.org/10.1061/(ASCE)0733-9399(1997)123:3(230)
  12. Kamath, G. M. and Wereley, N. M., 1997, A Nonlinear Viscoelastic-Plastic Model for Electrorheological Fluids, Smart Materials and Structures, Vol.6, No.3, pp.351-359 https://doi.org/10.1088/0964-1726/6/3/012
  13. Li, C. and Tan, Y., 2004, A Neural Networks Model for Hysteresis Nonlinearity, Sensors and Actuators A: Physical, Vol. 112, No. 1, pp. 49-54 https://doi.org/10.1016/j.sna.2003.11.016