• Title/Summary/Keyword: Hypersurface

Search Result 254, Processing Time 0.024 seconds

STRUCTURE JACOBI OPERATORS AND REAL HYPERSURFACES OF TYPE(A) IN COMPLEX SPACE FORMS

  • Ki, U-Hang
    • East Asian mathematical journal
    • /
    • v.37 no.1
    • /
    • pp.97-107
    • /
    • 2021
  • Let M be a real hypersurface with almost contact metric structure (��, ξ, ��, g) in a nonflat complex space form Mn(c). We denote S and Rξ by the Ricci tensor of M and by the structure Jacobi operator with respect to the vector field ξ respectively. In this paper, we prove that M is a Hopf hypersurface of type (A) in Mn(c) if it satisfies Rξ�� = ��Rξ and at the same time satisfies $({\nabla}_{{\phi}{\nabla}_{\xi}{\xi}}R_{\xi}){\xi}=0$ or Rξ��S = S��Rξ.

Certain Characterization of Real Hypersurfaces of type A in a Nonflat Complex Space Form

  • Ki, U-Hang
    • Kyungpook Mathematical Journal
    • /
    • v.61 no.1
    • /
    • pp.181-190
    • /
    • 2021
  • Let M be a real hypersurface with almost contact metric structure (ϕ, ��, η, g) in a nonflat complex space form Mn(c). We denote S and R�� by the Ricci tensor of M and by the structure Jacobi operator with respect to the vector field �� respectively. In this paper, we prove that M is a Hopf hypersurface of type A in Mn(c) if it satisfies R��ϕ = ϕR�� and at the same time R��(Sϕ - ϕS) = 0.

REAL HYPERSURFACES IN A NONFLAT COMPLEX SPACE FORM WITH SPECIAL STRUCTURE TENSOR FIELD

  • Lim, Dong Ho;Kim, Hoonjoo
    • The Pure and Applied Mathematics
    • /
    • v.28 no.3
    • /
    • pp.247-252
    • /
    • 2021
  • Let M be a real hypersurface in a complex space form Mn(c), c ≠ 0. In this paper, we prove that if (∇Xϕ)Y + (∇Yϕ)X = 0 holds on M, then M is a Hopf hypersurface, where ϕ is the tangential projection of the complex structure of Mn(c). We characterize such Hopf hypersurfaces of Mn(c).

A NEW CHARACTERIZATION OF TYPE (A) AND RULED REAL HYPERSURFACES IN NONFLAT COMPLEX SPACE FORMS

  • Wang, Yaning
    • Bulletin of the Korean Mathematical Society
    • /
    • v.59 no.4
    • /
    • pp.897-904
    • /
    • 2022
  • In this paper, we obtain an inequality involving the squared norm of the covariant differentiation of the shape operator for a real hypersurface in nonflat complex space forms. It is proved that the equality holds for non-Hopf case if and only if the hypersurface is ruled and the equality holds for Hopf case if and only if the hypersurface is of type (A).

LINEAR WEINGARTEN SPACELIKE HYPERSURFACES IN LOCALLY SYMMETRIC LORENTZ SPACE

  • Yang, Dan
    • Bulletin of the Korean Mathematical Society
    • /
    • v.49 no.2
    • /
    • pp.271-284
    • /
    • 2012
  • Let M be a linear Weingarten spacelike hypersurface in a locally symmetric Lorentz space with R = aH + b, where R and H are the normalized scalar curvature and the mean curvature, respectively. In this paper, we give some conditions for the complete hypersurface M to be totally umbilical.

CLOSED CONVEX SPACELIKE HYPERSURFACES IN LOCALLY SYMMETRIC LORENTZ SPACES

  • Sun, Zhongyang
    • Bulletin of the Korean Mathematical Society
    • /
    • v.54 no.6
    • /
    • pp.2001-2011
    • /
    • 2017
  • In 1997, H. Li [12] proposed a conjecture: if $M^n(n{\geqslant}3)$ is a complete spacelike hypersurface in de Sitter space $S^{n+1}_1(1)$ with constant normalized scalar curvature R satisfying $\frac{n-2}{n}{\leqslant}R{\leqslant}1$, then is $M^n$ totally umbilical? Recently, F. E. C. Camargo et al. ([5]) partially proved the conjecture. In this paper, from a different viewpoint, we study closed convex spacelike hypersurface $M^n$ in locally symmetric Lorentz space $L^{n+1}_1$ and also prove that $M^n$ is totally umbilical if the square of length of second fundamental form of the closed convex spacelike hypersurface $M^n$ is constant, i.e., Theorem 1. On the other hand, we obtain that if the sectional curvature of the closed convex spacelike hypersurface $M^n$ in locally symmetric Lorentz space $L^{n+1}_1$ satisfies $K(M^n)$ > 0, then $M^n$ is totally umbilical, i.e., Theorem 2.

A NOTE ON REAL HYPERSURFACES OF A COMPLEX SPACE FORM

  • Ki, U-Hang;Kim, He-Jin
    • Bulletin of the Korean Mathematical Society
    • /
    • v.26 no.1
    • /
    • pp.69-74
    • /
    • 1989
  • Recently one of the present authors [2] asserted that a real hypersurface of a complex space form M$^{n}$ (c), c.neq.0, is of cyclic parallel if and only if AJ=JA and he showed also a complete and connected cyclic-parallel real hypersurface of M$^{n}$ (c), is congruent to type $A_{1}$, $A_{2}$ or A according as c>0 or c<0. A real hypersurface of a complex space form M$^{n}$ (c) is said to be covariantly cyclic constant if the cyclic sum of covariant derivative of the second fundamental form is constant. The purpose of the present paper is to extend theorem 3 and 4 in [2] when the hypersurfaces are of coveriantly cyclic constant, that is a real hypersurface of a complex space form M$^{n}$ (c), c.neq.0, is of covariantly cyclic constant if an only if AJ=JA, and a complete and connected covariantly cyclic constant real hypersurface of M$^{n}$ (c) is congruent to type $A_{1}$, $A_{2}$ or a according as c>0 or c<0.

  • PDF