• Title/Summary/Keyword: Hypersurface

Search Result 256, Processing Time 0.022 seconds

SCREEN ISOTROPIC LEAVES ON LIGHTLIKE HYPERSURFACES OF A LORENTZIAN MANIFOLD

  • Gulbahar, Mehmet
    • Bulletin of the Korean Mathematical Society
    • /
    • v.54 no.2
    • /
    • pp.429-442
    • /
    • 2017
  • In the present paper, screen isotropic leaves on lightlike hypersurfaces of a Lorentzian manifold are introduced and studied which are inspired by the definition of isotropic immersions in the Riemannian context. Some examples of such leaves are mentioned. Furthermore, some relations involving curvature invariants are obtained.

LIGHTLIKE HYPERSURFACES OF INDEFINITE KAEHLER MANIFOLDS OF QUASI-CONSTANT CURVATURES

  • Jin, Dae Ho
    • East Asian mathematical journal
    • /
    • v.30 no.5
    • /
    • pp.599-607
    • /
    • 2014
  • We study lightlike hypersurfaces M of an indefinite Kaehler manifold $\bar{M}$ of quasi-constant curvature subject to the condition that the curvature vector field of $\bar{M}$ belongs to the screen distribution S(TM). We provide several new results on such lightlike hypersurfaces M.

LIGHTLIKE HYPERSURFACES WITH TOTALLY UMBILICAL SCREEN DISTRIBUTIONS

  • Jin, Dae-Ho
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.22 no.3
    • /
    • pp.409-416
    • /
    • 2009
  • In this paper, we study the geometry of lightlike hypersurfaces of a semi-Riemannian manifold. We prove a classification theorem for lightlike hypersurfaces M with totally umbilical screen distributions of a semi-Riemannian space form.

  • PDF

SPHERICAL CAPS IN A CONVEX CONE

  • Um, Taekwan
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.26 no.3
    • /
    • pp.601-603
    • /
    • 2013
  • We show that a compact embedded hypersurface with constant ratio of mean curvature functions in a convex cone $C{\subset}\mathbb{R}^{n+1}$ is part of a hypersphere if it has a point where all the principal curvatures are positive and if it is perpendicular to ${\partial}C$.

THE RIGIDITY FOR REAL HYPERSURFACES IN P3(ℂ)

  • LEE, SEONG-BAEK;KIM, NAM-GIL;HAN, SEUNG-GOOK;TAKAGI, RYOICHI
    • Honam Mathematical Journal
    • /
    • v.22 no.1
    • /
    • pp.99-106
    • /
    • 2000
  • We prove that a certain class of real hypersurfaces in $P_3({\mathbb{C}})$ has the rigidity. Making use of this we classify all homogeneous real hypersurfaces in $P_3({\mathbb{C}})$.

  • PDF

LIGHTLIKE REAL HYPERSURFACES WITH TOTALLY UMBILICAL SCREEN DISTRIBUTIONS

  • Jin, Dae-Ho
    • Communications of the Korean Mathematical Society
    • /
    • v.25 no.3
    • /
    • pp.443-450
    • /
    • 2010
  • In this paper, we study the geometry of lightlike real hyper-surfaces of an indefinite Kaehler manifold. The main result is a characterization theorem for lightlike real hypersurfaces M of an indefinite complex space form $\bar{M}(c)$ such that the screen distribution is totally umbilic.

2-TYPE SURFACES AND QUADRIC HYPERSURFACES SATISFYING ⟨∆x, x⟩ = const.

  • Jang, Changrim;Jo, Haerae
    • East Asian mathematical journal
    • /
    • v.33 no.5
    • /
    • pp.571-585
    • /
    • 2017
  • Let M be a connected n-dimensional submanifold of a Euclidean space $E^{n+k}$ equipped with the induced metric and ${\Delta}$ its Laplacian. If the position vector x of M is decomposed as a sum of three vectors $x=x_1+x_2+x_0$ where two vectors $x_1$ and $x_2$ are non-constant eigen vectors of the Laplacian, i.e., ${\Delta}x_i={\lambda}_ix_i$, i = 1, 2 (${\lambda}_i{\in}R$) and $x_0$ is a constant vector, then, M is called a 2-type submanifold. In this paper we showed that a 2-type surface M in $E^3$ satisfies ${\langle}{\Delta}x,x-x_0{\rangle}=c$ for a constant c, where ${\langle},{\rangle}$ is the usual inner product in $E^3$, then M is an open part of a circular cylinder. Also we showed that if a quadric hypersurface M in a Euclidean space satisfies ${\langle}{\Delta}x,x{\rangle}=c$ for a constant c, then it is one of a minimal quadric hypersurface, a genaralized cone, a hypersphere, and a spherical cylinder.

HYPERSURFACES IN THE UNIT SPHERE WITH SOME CURVATURE CONDITIONS

  • Park, Joon-Sang
    • Communications of the Korean Mathematical Society
    • /
    • v.9 no.3
    • /
    • pp.641-648
    • /
    • 1994
  • Let M be a minimally immersed closed hypersurface in $S^{n+1}$, II the second fundamental form and $S = \Vert II \Vert^2$. It is well known that if $0 \leq S \leq n$, then $S \equiv 0$ or $S \equiv n$ and totally geodesic hypersheres and Clifford tori are the only possible minimal hypersurfaces with $S \equiv 0$ or $S \equiv n$ ([6], [2]). From these results, Chern suggested some questions on the study of compact minimal hypersurfaces on the sphere with S =constant: what are the next possible values of S to n, and does in the ambient sphere\ulcorner By the way, S is defined extrinsically but, in fact, it is an intrinsic invariant for the minimal hypersurface, i.e., S = n(n-1) - R, where R is the scalar, curvature of M. Some partial answers have been obtained for dim M = 3: Assuming $M^3 \subset S^4$ is closed and minimal with S =constant, de Almeida and Brito [1] proved that if $R \geq 0$ (or equivalently $S \leq 6$), then S = 0, 3 or 6, Peng and Terng ([5]) proved that if M has 3 distint principal curvatures, then S = 6, and in [3] Chang showed that if there exists a point which has two distinct principal curvatures, then S = 3. Hence the problem for dim M = 3 is completely done. For higher dimensional cases, not much has been known and these problems seem to be very hard without imposing some more conditions on M.

  • PDF