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2-TYPE SURFACES AND QUADRIC HYPERSURFACES
SATISFYING (Az,x) = const.

CHANGRIM JANG AND HAERAE JO

ABSTRACT. Let M be a connected n-dimensional submanifold of a Eu-
clidean space E™t* equipped with the induced metric and A its Lapla-
cian. If the position vector x of M is decomposed as a sum of three vectors
T = x1 + x2 + xo where two vectors x1 and xo are non-constant eigen vec-
tors of the Laplacian , ie., Azx; = Az, = 1,2 ( \; € R) and z¢ is a
constant vector, then, M is called a 2-type submanifold. In this paper
we showed that a 2-type surface M in E3 satisfies (Az,z — 20) = ¢ for a
constant ¢, where ( , ) is the usual inner product in E3, then M is an open
part of a circular cylinder. Also we showed that if a quadric hypersurface
M in a Euclidean space satisfies (Az,x) = ¢ for a constant ¢, then it is
one of a minimal quadric hypersurface, a genaralized cone , a hypersphere,
and a spherical cylinder .

1. Introduction

Let M be an n-dimensional submanifold of the (n + k)-dimensionl Euclidean
space E"t* equipped with the induced metric. Denote by A the Laplacian
of M. If the position vector z of M in E™* can be decomposed as a finite
sum of non-constant eigenvectors of A, we shall say that M is of finite-type.
More precisely, M is said to be of g-type if the position vector x of M can be
expressed as in the following form:

T =2+ Ti +r Ty,

where x( is a constant vector, and Ti, (j = 1,---,q) are non-constant vectors
in E"** such that Az, = \g,x;,, \i; € R, \iy < --- < A;,. The notion of
finite-type submanifolds has been introduced by B.-Y. Chen [1]. Many results
concerning this subject are obtained during last three decades. Omne of the
interesting research areas on this subject is a classification of 2-type sumanifolds.
Th.Hasanis and Th.Vlachos proved that the only 2-type surface in the three
dimenional sphere S is an open part of a product of two circles of different radii

[4]. Also they proved that a spherical hypersurface M is of 2-type if and only if it
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has constant scalar curvature and mean curvature [5]. In [2] B.-Y.Chen studied
a special 2-type surface M in E® whose postion vector = can be decomposed as
a sum of two non-constant eingenvectors r = x1 + 2, Az; = 0, Azxs = Axo,
0 #£ XA € R. Such a 2-type surface is said to be of null 2-type. Especillay he
proved that the only null 2-type surface in E® is a circular cylinder. Many
studies on null 2-type submanifolds are followed. But untill now generally 2-
type surfaces are not classified. We can notice that every known finite-type
hypersurface M satisfies the condition (Az,z) = ¢ for a constant ¢, where x is
the position vector of M and (, ) denotes the usual inner product in Euclidean
space. Note that the condition (Az,z) = ¢ for a constant ¢ is not coordinate
invariant. Sometimes a parallel translation is necessary to see that this condition
can be satisfied. So we would like to study finite-type submanifold satisfying
the codndition (Az,x) = ¢ for a constant c¢. In Section 3 we will show that if a
2-type surface M in E3 satisfies the condition (Ax,x —x¢) = ¢ for a constant c,
then it is an open part of a circular cylinder. In [3] B.-Y. Chen, F. Dillen and H.
Z. Song proved that if M is a quadric hypersurface of finite-type in a Euclidean
space, then M is one of a minimal quadric hypersurface, a spherical cylinder,
and a hypersphere. In Section 4, we will show that if a quadric hypersurface M
in a Euclidean space satisfies the condition (Ax,z) = ¢ for a constant ¢, then
it is one of a minimal quadric hypersurface, a generalized cone , a hypersphere,
and a spherical cylinder.

2. Preliminaries

Consider an n-dimensional submanifold M of E™*! and denote V and V
the usaual Riemannian connection of E"*! and the induced connection on M,
respectively. The formulas of Gauss and Weingarten are given respectively by

VxY = VxY +h(X,Y), (1)
Vxé = —A¢X + Dx¢ (2)

for vector fields X,Y tangent to M and £ normal to M, where h is the second
fundamental form , D the normal connnection, and A the shape operator of
M. For each normal vector £ at a point p € M, the shape operator A¢ is a self
adjoint operator of the tangent space T, M at p. The second fundamental form
h and the shape operator A are related by

<A€X7 Y> = <h(X’ Y)a§>> (3>

where ( , ) is the usaual inner product in E"™!. Let v be an E"!-valued
smooth function on M, and let {e1,e2, - ,e,} be a local orthornomal frame
field of M. We define

n

Av = Z(?eivetv - ?vel_eiv).

=1
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It is well known that the position vector x and the mean curvature vector H of
M in E™*1 satisfy

Az =H. (4)

Let e, +1 be a local unit normal vector to M. Since the mean curvature vector
H is normal to M, we have H = (H,ent1)ent1. The function (H,e,41) is
called mean curvature function and it will be denoted by «.

3. 2-type surface in E? satisfying (Az,x — x¢) = const.
Let M be a 2-type surface in E3. Then its position vector z is expressed in
the form

T =20+ T1+ X2,

where g is a constant vector, and x;(i = 1,2) are nonconstant vectors in E?
such that Ax; = \a;, A € R, A1 # Aa. By (4) we have Az = H = A1 + Aoz
and A%r = AH = \2z1 + A3z2. Thus

A% = ()\1 + /\Q)Al‘ — )\1/\2(1‘ — xo). (5)

The general basic formula of AH derived in [1] plays important role in the study
of low type. In particular, if M is a surface in E3, it reduces to

AH = (Aa — a|A., ||*)es — 2aA., (grada) — agrada, (6)

where « is the mean curvature function and e3 a unit normal vector of M in
E3. By comparing the tangential part of both (5) and (6), we find

MAz(z — 20)T = 24, (grada) + agrada, (7)

where (x — x9)”7 means the tangential part of the vector x — x¢. Now suppose
that

(Az,z—x0) =c (8)
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holds for a constant c¢. Let {e1, ez} be a local orthonormal frame of M. Since

2 2
A{Az,x —xg) = Z eei{Ax,x — xo) — Z Ve, ei{Az,x — x0)
i=1 i=1
2 —
= Y ei((Ve,(Az), 2 — z0) + (Az, ;)
i=1
2 —
- Z(<vveiei(Am)7 T = SL'()> + <A£L'7 veiei>)
i=1
2 ) 2
= Z ei(Ve, (Az),x — zo) — Z(Vveiei (Ax),x — x0)
i=1 i=1

2
= Z(<v€ivei(A‘r)7x - x0> + <v6i (A[L’), 61>)
=1

~3 (Vv e (A2)x — xp)

i=1

= (A(Az),z —20) + ) (Ve (D), €5)

1

2

= (A%z,0—x0) + ' (De,(Az) — Apgzes, e;) (by (2))

= (A%, x—x0) —

i
2
=1
2
i=1
2

= (A’z,7 —x0) — Z(Am, h(e;, e;)) (by (3))

i=1
= (A%z,x —x0) — (Az, Az),
(8) and Az = H = aeg imply
(A%z, 2 — x0) — a® = 0. (9)
From (5), (8) and (9), we get
(A1 + A2)e — Moz — zo, ¢ — x0) — a? = 0.

Differentiatiating both sides of the above equation in the direction of a tangent
vector X on M, we find

=2\ Ao {x — 29, X) — 20X () =0

or
A

(67

X(a) = (X, (@ —@0)").
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This implies that

grada = — (z — x0)7T. (10)
Lemma 3.1. Let M be a 2-type surface in E® whose position vector x is ex-
pressed as x = xg + x1 + T2, where xy is a constant vector, and x;(i = 1,2) are
nonconstant vectors in E3 such that Ax; = N\jz;, \s € R, \1 # \o. Assume that
(Az,z — x0) = ¢ holds for a constant c. Then the mean curvature function «
of M 1is constant.

Proof. Suppose that « is nonconstant. If M is of null 2-type, then M is a circular
cylinder [2], which implies that the mean curvature function « is constant. So
the assumptiom implies that M is not of null 2-type. Substituting (10) into (7)
we get
Ay (x — 20)T = —a(z — x0)T,

which implies that grada is a principal vector of the shape operator A., and
the corresponding principal curvature is —a. Since « is the sum of two prin-
cipal curvatures, the other principal curvature is 2a. Let {e1,es} be a local
orthonormal frame of M such that e; is parallel to grada. Note that es(a) = 0.

By the Coddazzi equations, we have

e1(2a) = (—a—2a)wiz(ez) = —3awia(es), (11)

e2(—a) = (—a—2a)wiz(e1) = —3awiz(e1), (12)

where w19 is the connection form of {e1,es}. Since a is nonzero and es(a) = 0,

from (12) it follows that wiz(e;) = 0. From (11) we have wia(es) = —227(5(“).
This and wy2(e1) = 0 implies that

w1 = — 26;2[0() 927 (13)

where {61,602} denotes the dual 1-forms of {e1, e2}. Since grada = e;(a)ey, by
(10) we find
(x — xp,e2) = 0.

Differentiating both sides of the above in the direction of es, we find

1+ (z — g, Ve,e2) = 0. (14)
By (1) and h(es,es) = 2aes we have

Ve,€2 = h(ea, ea) + Ve,e2 = 2aes + war (€2)e.
Substituting this into (14) and we find
1+ 2(x — xg, aes) + waoi(e2){(x — xg, 1) = 0.

By using (8), (10), (13) and considering grada = e;(a)e; it follows that

2(e1())®

=0
312

1+ 2¢c—
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from the above equation. This implies that e(a) is a constant. Since dwiy =
— K6, A6y, where K is the Gauss curvature of M, from (13) and the structural
equation dfs = wa1 A 01, we get

2e1(a), er(a) 2e1(a) , 2e1(a)
—-K0 NGy = — — 61 N by) — — 61 N0
Lo 3 (Taz N 5 e NG
10e; (a0)?
= ————60, Nbs.
PCEERALL
Since K = —2a?, from this we have 18a* = 10(e1(«))?, which implies that « is
constant. This is a contradiction. O

Proposition 3.2. Let M be a 2-type surface in E® whose position vector x is
expressed as * = xg + w1 + T2, where xy is a constant vector, and x;(i = 1,2)
are nonconstant vectors in E3 such that Ax; = \ix;, Ai € R, A\1 # Xo. Assume
that (Ax,x — xg) = ¢ holds for a constant c. Then M is of null 2-type , i.e., M
is an open part of a circular cylinder.

Proof. By Lemma 3.1, the mean curvature function « of M is constant. By (6)
it implies that A%z = AH is normal to M. From (5) it follows that A A2(z — )
is normal to M. If M is not of null 2-type, then the vector x — x( is normal to
M. This is impossible. Thus M is of null 2-type. Consequently M is an open
part of a circular cylinder [2]. O

4. Quadric hypersurfaces satisfying (Az,z) = const.

Consider the set M of points (21, ,Zp+1) in the (n + 1)-dimensional Eu-
clidean space E™*! satisfying the following equation of the second degree:
n+1 n+1
Z Qi ;5 + Z bix; +d =0, (15)
i,j=1 i=1
where a;;, b;, d are real numbers. The equation can be experssed as in the
following form
(Az+b,z) +d =0,
where ( , ) is the usual inner product of E"*!, for the matrix A = (a;;) and
X1 b1

vectors x = : , b= : . We can assume without loss of generality

Tn41 bn+1
that the matrix A = (a;;) is symmetric and A is not a zero matrix. If the left
side of the equation (15) is reducible polynomial, then M is a hyperplane or a
union of two hyperplanes. In this paper we assume that the polynomial given by
the left side of (15) is irreducible over real numbers. In general the whole set M
does not form a submanifold of E"*!. Instead it can be shown that the subset
T
M ={z = g € M|2Az + b # 0} is an n-dimensional submanifold

Tn41
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of E™*! by using the implicit function theorem. In this paper, we mean the
hypersurface M’ by a quadric hypersurface M described by (15). We will study
a quadric hypersurface M satisfying the condition (Axz, ) = ¢ for a constant c,
where z is the position vector of M and A its Laplacian. Note that the condition
(Azx,x) = ¢ for a constant ¢ is invariant under an orthogonal transformation.
So without loss of generalty we may assume that the matrix A is diagonal with
digonal entries A1, -+, Ap41. So the equation (15) can be written as

n+1 n+1
S oXia? > biwi+d =0, (16)
=1 =1

or
(Azx + b,z) +d =0, (17)

where A is the diagonal matrix diag[\;, -, An+1]- Note again that we only
consider the case that the left side of (16) is irreducible. First of all we will
investigate some basic properties of quadric hypersurface M and classify the
minimal quadric hypersurfaces in an elementary way.

Lemma 4.1. The vector 2Ax + b is a nozero normal vector to M.

Proof. Differentiating both sides of (17) in the direction of a tangent vector field
X of M , we find
(AX,z) + (Az 4+ b,X) =0
or
(2Az + b, X) = 0.
This implies that 2Ax+b is normal to M. By assumptiom 2Ax+b is nonzero. [J

Lemma 4.2. Let {e1, - ,en} be a local orthonormal frame of M . Then the
following holds.
n

Z<2Aei, ei) + (2Az + b, Az) = 0. (18)

i=1
Proof. Let {e1,--- ,e,} be alocal orthonormal frame of M . By Lemma 4.1 we
have

(2Az +b,e;) =0

for i = 1,2,--- ,n. Differentiating the above equation in the direction of e; we
find

<2A€7;, €i> + <2A$ + b7 h(eia el)> = 07

where h is the second fundamental form of M . Since Az = Y7, h(e;, e;), by
summing up over i we get (18). O

It is already well-known that the only minimal quadric hypersurfaces are
cones described in the following lemma. But we will prove it by using Lemma
4.2.
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Lemma 4.3. If M is a minimal quadric hypersurface, then by a parallel trans-
lation and an orthogonal coordinate change, it can be described by

k k+1
(=D i+ (1—k) > a7=0
=1 i=k+1

for integers k,l(k,l > 1, k+1<n-+1).

Proof. Let M be a minmal quadric hypersurfaces described by (16). Since the
condition minimality is invariant under any parallel translation and orthogonal
coordinate change, we may write the equation (16) as

> Xal4+d=0(N#0,i=1,s<n+1)

=1
or
s s+t
i=1 i=s+1

(AZ%Oa i:L"’,Sa bj7é03]:5+1375+t§n+1)

We will show that the second description is impossible. Suppose that M is

described by the second equation. Let eq,--- , e, be a local orthonormal frame
of M . Since 2Ax + b is a normal vector field of M. Thus ey, -- , e, and éf‘iiz‘

form a Euclidean orthonormal frame, where |2Ax + b| means the magnitude of
the vector 2Ax 4+ b. So we have

n

> (24ei ) + (24

=1

24z +b 24z +b
|2Az + 0| |24z + )|

) = r(24),
where tr(2A4) is the trace of the matrix 2A4. Since M is minimal, it follows from
(18) and the above equation that

(2A(2Az +b),2Az +b) = tr(24)(2Ax + b,2Ax + b). (19)

Since bs+1 # 0, M can be locally considered as a graph of the function ;41 =
L (—d— 30 Na? =S5 biry). The equation (19) can be written as

bst1 1=s542
s s+t
D AN (tr(24) — 2\)af — tr(24) Y b7 =0.
i=1 i=s+1
As x1,--- ,xs are independent variables, from the above equation, we have
N =tr(A),i=1,--,sand tr(24) X717 | b2 = 0. From this we find \; = 0,i =
1,---,s, which is a contradiction. Thus we know that b = 0, which implies

(Az,z) +d =0, or >.;_; N\jz? +d = 0. The equation (19) can be simplified as
(A%z, Az) = tr(A)(Az, Az). (20)
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Without loss of generality we may consider M as a graph of the function z; =
—d — >>7_, \z?. Substituting this into (20) we get

D XN = (AN = AT+ tr(A)An)af — Md(A — tr(A4)) = 0.
=2

From this we have
)\22 - tr(A)/\l — )\% + tI‘(A)/\l = O7 1= 2, e, S, )\1d(/\1 — tI‘(A)) = 0.

From the second equation, we have d = 0 or Ay = tr(A). If Ay = tr(A4), then
the first equation and the condition \; # 0,i = 2,--- ,s we find \; = tr(A),: =
1,---,s, which implies that s = 1 or M and thus A\;x? + d is reducible. So we
have d = 0. The first equation is factorized into

(Ai = A1) (A = (tr(A4) — A1) =0,

which implies that \; = Ay or A; = tr(A) — A\, i = 1,---,s. Ifall \; = Ay,
then )\Zle 22 = 0or ¥y = --- = x5 = 0, which is impossible. So without
loss of generality, we may assume that Ay = -+ = Ay and Agy1 = -+ = A
for some positive integer k,1 < k < s. Suppose that k& = 1. Then, since
tr(A) = A+ (s — 1)(tr(A) — A1), (s = 2)(tr(A) — A1) = 0. This implies that
s =2or tr(A) — Ay = 0. In any cases, the polynomial Y ;_, X\;a? is reducible.
So we may assume that 1 <k < s—1. Let \y = A, tr(A)— A\ = pand s—k = L.
From tr(A) = kA +lp and p = tr(A) — A, we have p = %:—f/\. So given quadric
hypersurface can be discribed as

k 1 k k+1
2 ; 2 =
)\in + lfl/\lz z; =0
i=1 i=k+1
or
k k+1
(-1 af+(1—k) > a?=0 (21)
i=1 i=k+1

for some two positive integers k,I > 1,k 4+ 1 < n + 1. Conversely, we can show
that a quadric hypersurface described by (21) is a minimal hypersurface. Let
M be a quadric hypersurface in E"*! discribed by (21). The equation (21) can
be written as (Az,z) = 0, where A is an (n+1) x (n+ 1) diagonal matrix with
diagonals [ — 1,--- I —1,1 —Fk,---,1 —k,0,---,0. Let e1,--- ,e, be a local

orthonormal frame of M. Since Iﬁ%\ is a unit normal vector to M, we have

Axr  Ax

A a4 (A A
< elael>+ +< enae’l’b>+< |AZL’|,|A$|

) = tr(A) = k(I—1)+1(1—k) = | — k.
(22)



580 C.JANG AND H.JO

By using (21) we have
e A (1 1300, 22+ (1= k)P i 2
|Az|” |Ax] (=120 27+ (- k20 a2
(-1 22+ (- - k> XF a?

(=120 a2+ (1= )1 — k) F, a?
= [—k.

So from (22) and the above equation we get
(Aey,e1) + -+ (Aey,en) = 0. (23)
By similar computation in Lemma 4.2, we have
(Aey,e1) + -+ (Aep, en) + (Az, Ax) = 0.
This and (23) imply that (Az, Az) = 0. Subsequently we have Az = 0. So we

can conclude that M is minimal. O

From now on we assume that M is a quadric hypersurface described by
(Az 4+ b,z) +d = 0 for an (n + 1) x (n + 1) daigoanl matrix A with diagonal
b1

entries A1, -+, Ap4+1 and a constant vector b = in E**! and satisfies

bn+1
(Az,x) = ¢ for a constant c .

Lemma 4.4. Assume that ¢ # 0. Then the following holds.
tr(2A4)(2Ax + b,2Az + b)(2Ax + b, z) — (2A(2Az + 1), 2Ax + b)(2Ax + b, )
+c(2Ax 4 b, 2Ax + b)? =

Proof. Let {e1, - ,en} be a local orthonormal frame of M . Then by Lemma
4.2 the following holds.

n

> (24ei i) + (24z + b, Ax) = 0. (24)
i=1
Also we have
n 24x +b 2Ax+b
2Ae;, e; 2A = tr(24). 2

=1

Since both 2Ax + b and Az are normal to M, there exists a scalar function
f(z) defined on M such that Az = f(z)(2Ax + b). This and (24) imply that
S (2Ae;,€;) = — f(x)(2Az + b, 2Ax + b). Substituting this into (25), we have

(2A(2Az +b),2Ax + b)

24) —
A = A T 240 )

+ f(x)(2Az + b,2Ax + b) = 0.
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From this and (Az,z) = f(z)(2Az + b, x) = ¢, it follows that

(2A(2Ax 4+ b),2Az + b) c
(2Ax + b,2Ax + b) (2Ax + b, x)

tr(24) — (2Az +b,2Az + b) =0

or

tr(24)(2Az + b,2Az + b)(2Az + b, x) — (2A(2Ax + b),2Ax + b)(2Ax + b, )
+c(2Ax + b,2Ax + b)? = 0.
U

We proceed two cases seperately.
Case 1. (Az,z) =0

If Az = 0, then M is a minimal hypersurface. Assume that M is nonminimal,
that is, Az # 0. As both of Az and 2Ax + b are normal to M, there exists
a nonzero scalar funtion f(z) defined on M such that Az = f(x)(24z + b).
From 0 = (Az,z) = f(z)(2Az + b, x), we get (2Ax + b,x) = 0 . From this and
(Az +b,z) + d = 0, we have (Ax,x) = d. We can deduce that Az is a normal
vector field of . Since 2Ax + b is also normal, we can see that if b is nonzero
vector, then b is a constant normal vector of M. As M is not a hyperplane, it is
impossible. So we can say that b = 0 and consequently (Ax,x) = 0. Therefore
we can conclude that a quadric hypersurface satisfies (Axz, z) = 0, then M is a
minimal quadric hypersurface described in Lemma 4.3 or a nonminimal quadric
hypersurface described by (Ax,z) = 0 for a diagonal matrix A.

Case 2. (Az,z) =c#0

First we will show that if A; = 0, then b; =0 for ¢ € {1,--- ,n+ 1}. Suppose
that Ay =0 and b; # 0. Then M can be locally considered a graph of function
1 = i(—d - ZZ:; Niz? — Z::—; bixz;), since (Az +b,x) = d. Lemma 4.2 and
(Az + b, x) + d = 0 imply that

tr(24)(2Az + b,2Az + b) ((Az, x) — d) — (2A(2Az + 1), 2Az + b) ((Az, x) — d)

+c(2Ax 4 b, 2Ax + b)? = 0. (26)
We can observe the left side of (26) is a polynomial of 3, -, 2,41 , which
are independent variables. So it must be identically zero. If we consider the
coefficients of the term x#, i = 2,--- ,n + 1 of this polynomial, we find

4tr(2A)NF — 8} +16cA} =0, i =2, ,n+ 1.
This implies that
Ai=0or (2—4e)\; =tr(24), i =2,--- ;n+ 1. (27)
Now consider the coefficients of a:fx? (2<i,7<n+1,i#j) . Then we find
4tr(2A)(ATA; + AT — 8(APA; + AIN) + 32eA7AT = 0. (28)
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If 2 — 4¢ = 0, then from (27) we find tr(24) = 0. This and (28) imply that
all \; are equally zero. It’s a contradiction. So we can see that 2 — 4¢ # 0.
Consequently from (27) we may assume that

ANi=A#0,i=2,--- .k
and
N=0,i=k+1,-,n+1.
So the equation (26) can be written as
n+1

r(24)( 4/\2235 +4Amez+Zb2 )\Zx -
—(8/\32x§+8>\22bi$1+2)\zb$)(>\2$3_d)

n+1

4)\2290 +4>\bez+2b2 (29)

If we consider the coefﬁaent of the term xzox; (i = 3,--- , k) of the left side
of (29), it is equal to 32¢A%byb;, which must be zero. Suppose that by # 0 . It
follows that b; = 0, i = 3,--- , k. So the coefficients of the terms x3 and z3 are
equals to

n+1 n+1
—4dX*tr(24) + tr(2AND_ b7) + 8dA* — 2X°03 + 8eX* (D b7)
i=1 i=1
and
n+1 n+1
—4dX*tr(24) + tr(2A)ND_ b7) + 8dA® — 23703 + 8eA* (D b7) + 16X7ch3,
i=1 i=1
respectively. Since both of them are equal to zero, we get by = 0 , which is a
contradiction. So we can say that b; = 0,7 = 2,--- , k. The equation (26) can
be rewritten as

n+1
r(24)( 4A2Za; +0+ > b )\Z:c -
i=k+1
n+1
—8\ Z AZm —d) +C4A2Zx +bi 4+ DY )P =0.  (30)
=2 i=k+1

Then the coefficients of (Zz o T7)2, Zf:z 22 and the constant term of the left
side of (30) are equal to
AN3(tr(24) — 2\ + 4e)),
n+1 n+1
tr(24)(—4dA? + (67 + D b1A) +8dAT +8c(bf + Y bP)A
i=k+1 i=k+1
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and
n+1 n+1
—tr(2A)d(b + D> b)) +c(bi + > b})?
i=k+1 i=k+1

respectively. They must be equal to zero. Substituting tr(24) = 2(k — 1)\ into
the above coefficients, we have

k—1=1-2c,
n+1 n+1
(k= 1)(—4dX+03 + > b7)+4dA+4e(bi + > b)) =0
i=k+1 i=k+1
and
n+1 n+1
—2(k — 1)dA(BT + > b e+ > b=
i=k+1 i=k+1

Substituting the first equation into the second one and the third one, we find
n+1 n+1
BT+ D b +8cdA+2e(b+ Y b7)=0
i=k+1 i=k+1

and
n+1
—2dA+ dedX + c(bF + ) bF) =
i=k+1

Multiplying the number 2 at both sides of the second equation and subtracting it
from the first equation, we get 4d\ = —(b? + Z?+k1+1 b2). Substituting this into
the first equation, we find b% + Z:Hklﬂ b? = 0, which is a contradiction. So we
may assume that \; = 0 implies that b; =0,i=1,--- ,n+1. Thus (Az+0b,z)+
d = 0 can be written as Zle /\iﬂcf—i-Zf:l b;x;+d =0 or Ele )\i(xi—l—zbf)fi)z =e
for a constant e and the equation (26) can be given as

k k k k
b; b
tr(2A){4 Y N+ 73 (Y Nia? = d) = (8 N + 53D Aa? —d
i=1 =1 i=1 i=1

k
b;
c(4z M (2 + 2)%)2)2 =0
i=1

or
k

O A2 (tr(24)—2)) (i + Z)\x— +4CZ)\2 (zi+ 2;’ 2=0. (31)

i=1

Suppose b; # 0. Locally we may consider M as the graph of the function
T = :l:\/%l (e — Zfﬂ Ni(zi + 5-)2 — 2le1' Substituting this function into (31)
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we find
S - S 1 k b;
—d+ —— — LN bz by —(e— Y N(x;+ )2
g(@2, - ,ax)(e—d+ Dy ; z by (e ; (zi + 2/\¢) )
4+ dch(zy,--- ,x)* =0, (32)
where
k b, k b,

_ 2 ) ) i \2 _ _ (ot )2
gl@a, - k) _gxi (tr(2A)—2)\z)(xl+2)\i) +A1 (tr(24) =27 (e ;/\Z(ml—i-”\i) )
and

k b, k b,
_ 2( . ? )2 _ (e )2
b, ) = N g+ e = N+ 5007
If g(xz2, -+ ,xx) is not identically zero, then a rational function is equal to a
irrational function because of (32). So we have h(xa, - ,zx) = 0, which implies

that \; = Ay, ¢ =2,--- ,k and e = 0. This implies that Zle iz + %)2 =
e=0or )\ Zle(x + ;’Til)Q = 0. It is a contradiction. So we may conclude that
b =0,i=1,---,k. Thus equation (26) can be written as

—tr(24)(2Az,2Ax)(2d) + ((24)%x, 2Az)(2d) + c(2Az,2Ax)* =0

or

—tr(A)(Az, Az)d + (A%z, Az)d + c(Ax, Ax)* = 0.
By this and similar arguments we have \; = Ay, ¢ = 2,--- k. This implies
that if &k = n + 1, then M is a hypersphere and if k¥ < n + 1, then M is
a spherical cylinder. Combining results in Case 1 and Case 2, we have the
following proposition.

Proposition 4.5. If a quadric hypersurface M described by (16) in E"' sat-
isfies (Ax,x) = ¢ for a constant ¢, then it is one of the followings:

(1) a minmal quadric hypersurface.

(2) a nonminimal quadric hypersurface described by (Ax,x) = 0 for a diag-
onal matriz A.

(3) a hypersphere.

(4) a spherical cylinder.
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