East Asian Math. J.
Vol. 33 (2017), No. 5, pp. 571-585
http://dx.doi.org/10.7858/eamj.2017.040

2-TYPE SURFACES AND QUADRIC HYPERSURFACES SATISFYING $\langle\Delta x, x\rangle=$ const.

Changrim Jang and Haerae Jo

Abstract

Let M be a connected n-dimensional submanifold of a Euclidean space E^{n+k} equipped with the induced metric and Δ its Laplacian. If the position vector x of M is decomposed as a sum of three vectors $x=x_{1}+x_{2}+x_{0}$ where two vectors x_{1} and x_{2} are non-constant eigen vectors of the Laplacian, i.e., $\Delta x_{i}=\lambda_{i} x_{i}, i=1,2\left(\lambda_{i} \in R\right)$ and x_{0} is a constant vector, then, M is called a 2-type submanifold. In this paper we showed that a 2-type surface M in E^{3} satisfies $\left\langle\Delta x, x-x_{0}\right\rangle=c$ for a constant c, where \langle,$\rangle is the usual inner product in E^{3}$, then M is an open part of a circular cylinder. Also we showed that if a quadric hypersurface M in a Euclidean space satisfies $\langle\Delta x, x\rangle=c$ for a constant c, then it is one of a minimal quadric hypersurface, a genaralized cone, a hypersphere, and a spherical cylinder .

1. Introduction

Let M be an n-dimensional submanifold of the $(n+k)$-dimensionl Euclidean space E^{n+k}, equipped with the induced metric. Denote by Δ the Laplacian of M. If the position vector x of M in E^{n+k} can be decomposed as a finite sum of non-constant eigenvectors of Δ, we shall say that M is of finite-type. More precisely, M is said to be of q-type if the position vector x of M can be expressed as in the following form:

$$
x=x_{0}+x_{i_{1}}+\cdots+x_{i_{q}}
$$

where x_{0} is a constant vector, and $x_{i_{j}}(j=1, \cdots, q)$ are non-constant vectors in E^{n+k} such that $\Delta x_{i_{j}}=\lambda_{i_{j}} x_{i_{j}}, \lambda_{i_{j}} \in R, \lambda_{i_{1}}<\cdots<\lambda_{i_{q}}$. The notion of finite-type submanifolds has been introduced by B.-Y. Chen [1]. Many results concerning this subject are obtained during last three decades. One of the interesting research areas on this subject is a classification of 2-type sumanifolds. Th.Hasanis and Th.Vlachos proved that the only 2-type surface in the three dimenional sphere S^{3} is an open part of a product of two circles of different radii [4]. Also they proved that a spherical hypersurface M is of 2-type if and only if it

[^0]has constant scalar curvature and mean curvature [5]. In [2] B.-Y.Chen studied a special 2-type surface M in E^{3} whose postion vector x can be decomposed as a sum of two non-constant eingenvectors $x=x_{1}+x_{2}, \Delta x_{1}=0, \Delta x_{2}=\lambda x_{2}$, $0 \neq \lambda \in R$. Such a 2-type surface is said to be of null 2-type. Especillay he proved that the only null 2-type surface in E^{3} is a circular cylinder. Many studies on null 2 -type submanifolds are followed. But untill now generally 2 type surfaces are not classified. We can notice that every known finite-type hypersurface M satisfies the condition $\langle\Delta x, x\rangle=c$ for a constant c, where x is the position vector of M and \langle,$\rangle denotes the usual inner product in Euclidean$ space. Note that the condition $\langle\Delta x, x\rangle=c$ for a constant c is not coordinate invariant. Sometimes a parallel translation is necessary to see that this condition can be satisfied. So we would like to study finite-type submanifold satisfying the codndition $\langle\Delta x, x\rangle=c$ for a constant c. In Section 3 we will show that if a 2-type surface M in E^{3} satisfies the condition $\left\langle\Delta x, x-x_{0}\right\rangle=c$ for a constant c, then it is an open part of a circular cylinder. In [3] B.-Y. Chen, F. Dillen and H. Z. Song proved that if M is a quadric hypersurface of finite-type in a Euclidean space, then M is one of a minimal quadric hypersurface, a spherical cylinder, and a hypersphere. In Section 4, we will show that if a quadric hypersurface M in a Euclidean space satisfies the condition $\langle\Delta x, x\rangle=c$ for a constant c, then it is one of a minimal quadric hypersurface, a generalized cone, a hypersphere, and a spherical cylinder.

2. Preliminaries

Consider an n-dimensional submanifold M of E^{n+1} and denote $\bar{\nabla}$ and ∇ the usaual Riemannian connection of E^{n+1} and the induced connection on M, respectively. The formulas of Gauss and Weingarten are given respectively by

$$
\begin{align*}
\bar{\nabla}_{X} Y & =\nabla_{X} Y+h(X, Y) \tag{1}\\
\bar{\nabla}_{X} \xi & =-A_{\xi} X+D_{X} \xi \tag{2}
\end{align*}
$$

for vector fields X, Y tangent to M and ξ normal to M, where h is the second fundamental form , D the normal connnection, and A the shape operator of M. For each normal vector ξ at a point $p \in M$, the shape operator A_{ξ} is a self adjoint operator of the tangent space $T_{p} M$ at p. The second fundamental form h and the shape operator A are related by

$$
\begin{equation*}
\left\langle A_{\xi} X, Y\right\rangle=\langle h(X, Y), \xi\rangle \tag{3}
\end{equation*}
$$

where \langle,$\rangle is the usaual inner product in E^{n+1}$. Let v be an E^{n+1}-valued smooth function on M, and let $\left\{e_{1}, e_{2}, \cdots, e_{n}\right\}$ be a local orthornomal frame field of M. We define

$$
\Delta v=\sum_{i=1}^{n}\left(\bar{\nabla}_{e_{i}} \bar{\nabla}_{e_{i}} v-\bar{\nabla}_{\nabla_{e_{i}} e_{i}} v\right)
$$

It is well known that the position vector x and the mean curvature vector H of M in E^{n+1} satisfy

$$
\begin{equation*}
\Delta x=H . \tag{4}
\end{equation*}
$$

Let e_{n+1} be a local unit normal vector to M. Since the mean curvature vector H is normal to M, we have $H=\left\langle H, e_{n+1}\right\rangle e_{n+1}$. The function $\left\langle H, e_{n+1}\right\rangle$ is called mean curvature function and it will be denoted by α.
3. 2-type surface in E^{3} satisfying $\left\langle\Delta x, x-x_{0}\right\rangle=$ const.

Let M be a 2-type surface in E^{3}. Then its position vector x is expressed in the form

$$
x=x_{0}+x_{1}+x_{2},
$$

where x_{0} is a constant vector, and $x_{i}(i=1,2)$ are nonconstant vectors in E^{3} such that $\Delta x_{i}=\lambda_{i} x_{i}, \lambda_{i} \in R, \lambda_{1} \neq \lambda_{2}$. By (4) we have $\Delta x=H=\lambda_{1} x_{1}+\lambda_{2} x_{2}$ and $\Delta^{2} x=\Delta H=\lambda_{1}^{2} x_{1}+\lambda_{2}^{2} x_{2}$. Thus

$$
\begin{equation*}
\Delta^{2} x=\left(\lambda_{1}+\lambda_{2}\right) \Delta x-\lambda_{1} \lambda_{2}\left(x-x_{0}\right) \tag{5}
\end{equation*}
$$

The general basic formula of ΔH derived in [1] plays important role in the study of low type. In particular, if M is a surface in E^{3}, it reduces to

$$
\begin{equation*}
\Delta H=\left(\Delta \alpha-\alpha\left\|A_{e_{3}}\right\|^{2}\right) e_{3}-2 \alpha A_{e_{3}}(\operatorname{grad} \alpha)-\alpha \operatorname{grad} \alpha \tag{6}
\end{equation*}
$$

where α is the mean curvature function and e_{3} a unit normal vector of M in E^{3}. By comparing the tangential part of both (5) and (6), we find

$$
\begin{equation*}
\lambda_{1} \lambda_{2}\left(x-x_{0}\right)^{T}=2 A_{e_{3}}(\operatorname{grad} \alpha)+\alpha \operatorname{grad} \alpha, \tag{7}
\end{equation*}
$$

where $\left(x-x_{0}\right)^{T}$ means the tangential part of the vector $x-x_{0}$. Now suppose that

$$
\begin{equation*}
\left\langle\Delta x, x-x_{0}\right\rangle=c \tag{8}
\end{equation*}
$$

holds for a constant c. Let $\left\{e_{1}, e_{2}\right\}$ be a local orthonormal frame of M. Since

$$
\begin{aligned}
\Delta\left\langle\Delta x, x-x_{0}\right\rangle= & \sum_{i=1}^{2} e_{i} e_{i}\left\langle\Delta x, x-x_{0}\right\rangle-\sum_{i=1}^{2} \nabla_{e_{i}} e_{i}\left\langle\Delta x, x-x_{0}\right\rangle \\
= & \sum_{i=1}^{2} e_{i}\left(\left\langle\bar{\nabla}_{e_{i}}(\Delta x), x-x_{0}\right\rangle+\left\langle\Delta x, e_{i}\right\rangle\right) \\
& -\sum_{i=1}^{2}\left(\left\langle\bar{\nabla}_{\nabla_{e_{i}} e_{i}}(\Delta x), x-x_{0}\right\rangle+\left\langle\Delta x, \nabla_{e_{i}} e_{i}\right\rangle\right) \\
= & \sum_{i=1}^{2} e_{i}\left\langle\bar{\nabla}_{e_{i}}(\Delta x), x-x_{0}\right\rangle-\sum_{i=1}^{2}\left\langle\bar{\nabla}_{\nabla_{e_{i}} e_{i}}(\Delta x), x-x_{0}\right\rangle \\
= & \sum_{i=1}^{2}\left(\left\langle\bar{\nabla}_{e_{i}} \bar{\nabla}_{e_{i}}(\Delta x), x-x_{0}\right\rangle+\left\langle\bar{\nabla}_{e_{i}}(\Delta x), e_{i}\right\rangle\right) \\
& -\sum_{i=1}^{2}\left\langle\bar{\nabla}_{\nabla_{e_{i}} e_{i}}(\Delta x), x-x_{0}\right\rangle \\
= & \left\langle\Delta(\Delta x), x-x_{0}\right\rangle+\sum_{i=1}^{2}\left\langle\bar{\nabla}_{e_{i}}(\Delta x), e_{i}\right\rangle \\
= & \left\langle\Delta^{2} x, x-x_{0}\right\rangle+\sum_{i=1}^{2}\left\langle D_{e_{i}}(\Delta x)-A_{\Delta x} e_{i}, e_{i}\right\rangle(\text { by }(2)) \\
= & \left\langle\Delta^{2} x, x-x_{0}\right\rangle-\sum_{i=1}^{2}\left\langle A_{\Delta x} e_{i}, e_{i}\right\rangle \\
= & \left\langle\Delta^{2} x, x-x_{0}\right\rangle-\sum_{i=1}^{2}\left\langle\Delta x, h\left(e_{i}, e_{i}\right)\right\rangle(\text { by }(3)) \\
= & \left\langle\Delta^{2} x, x-x_{0}\right\rangle-\langle\Delta x, \Delta x\rangle,
\end{aligned}
$$

(8) and $\Delta x=H=\alpha e_{3}$ imply

$$
\begin{equation*}
\left\langle\Delta^{2} x, x-x_{0}\right\rangle-\alpha^{2}=0 \tag{9}
\end{equation*}
$$

From (5), (8) and (9), we get

$$
\left(\lambda_{1}+\lambda_{2}\right) c-\lambda_{1} \lambda_{2}\left\langle x-x_{0}, x-x_{0}\right\rangle-\alpha^{2}=0
$$

Differentiatiating both sides of the above equation in the direction of a tangent vector X on M, we find

$$
-2 \lambda_{1} \lambda_{2}\left\langle x-x_{0}, X\right\rangle-2 \alpha X(\alpha)=0
$$

or

$$
X(\alpha)=-\frac{\lambda_{1} \lambda_{2}}{\alpha}\left\langle X,\left(x-x_{0}\right)^{T}\right\rangle
$$

This implies that

$$
\begin{equation*}
\operatorname{grad} \alpha=-\frac{\lambda_{1} \lambda_{2}}{\alpha}\left(x-x_{0}\right)^{T} . \tag{10}
\end{equation*}
$$

Lemma 3.1. Let M be a 2-type surface in E^{3} whose position vector x is expressed as $x=x_{0}+x_{1}+x_{2}$, where x_{0} is a constant vector, and $x_{i}(i=1,2)$ are nonconstant vectors in E^{3} such that $\Delta x_{i}=\lambda_{i} x_{i}, \lambda_{i} \in R, \lambda_{1} \neq \lambda_{2}$. Assume that $\left\langle\Delta x, x-x_{0}\right\rangle=c$ holds for a constant c. Then the mean curvature function α of M is constant.

Proof. Suppose that α is nonconstant. If M is of null 2-type, then M is a circular cylinder [2], which implies that the mean curvature function α is constant. So the assumptiom implies that M is not of null 2-type. Substituting (10) into (7) we get

$$
A_{e_{3}}\left(x-x_{0}\right)^{T}=-\alpha\left(x-x_{0}\right)^{T},
$$

which implies that $\operatorname{grad} \alpha$ is a principal vector of the shape operator $A_{e_{3}}$ and the corresponding principal curvature is $-\alpha$. Since α is the sum of two principal curvatures, the other principal curvature is 2α. Let $\left\{e_{1}, e_{2}\right\}$ be a local orthonormal frame of M such that e_{1} is parallel to grad α. Note that $e_{2}(\alpha)=0$. By the Coddazzi equations, we have

$$
\begin{align*}
e_{1}(2 \alpha) & =(-\alpha-2 \alpha) \omega_{12}\left(e_{2}\right)=-3 \alpha \omega_{12}\left(e_{2}\right), \tag{11}\\
e_{2}(-\alpha) & =(-\alpha-2 \alpha) \omega_{12}\left(e_{1}\right)=-3 \alpha \omega_{12}\left(e_{1}\right), \tag{12}
\end{align*}
$$

where ω_{12} is the connection form of $\left\{e_{1}, e_{2}\right\}$. Since α is nonzero and $e_{2}(\alpha)=0$, from (12) it follows that $\omega_{12}\left(e_{1}\right)=0$. From (11) we have $\omega_{12}\left(e_{2}\right)=-\frac{2 e_{1}(\alpha)}{3 \alpha}$. This and $\omega_{12}\left(e_{1}\right)=0$ implies that

$$
\begin{equation*}
\omega_{12}=-\frac{2 e_{1}(\alpha)}{3 \alpha} \theta_{2}, \tag{13}
\end{equation*}
$$

where $\left\{\theta_{1}, \theta_{2}\right\}$ denotes the dual 1-forms of $\left\{e_{1}, e_{2}\right\}$. Since $\operatorname{grad} \alpha=e_{1}(\alpha) e_{1}$, by (10) we find

$$
\left\langle x-x_{0}, e_{2}\right\rangle=0
$$

Differentiating both sides of the above in the direction of e_{2}, we find

$$
\begin{equation*}
1+\left\langle x-x_{0}, \bar{\nabla}_{e_{2}} e_{2}\right\rangle=0 . \tag{14}
\end{equation*}
$$

By (1) and $h\left(e_{2}, e_{2}\right)=2 \alpha e_{3}$ we have

$$
\bar{\nabla}_{e_{2}} e_{2}=h\left(e_{2}, e_{2}\right)+\nabla_{e_{2}} e_{2}=2 \alpha e_{3}+\omega_{21}\left(e_{2}\right) e_{1}
$$

Substituting this into (14) and we find

$$
1+2\left\langle x-x_{0}, \alpha e_{3}\right\rangle+\omega_{21}\left(e_{2}\right)\left\langle x-x_{0}, e_{1}\right\rangle=0 .
$$

By using (8), (10), (13) and considering grad $\alpha=e_{1}(\alpha) e_{1}$ it follows that

$$
1+2 c-\frac{2\left(e_{1}(\alpha)\right)^{2}}{3 \lambda_{1} \lambda_{2}}=0
$$

from the above equation. This implies that $e_{1}(\alpha)$ is a constant. Since $d \omega_{12}=$ $-K \theta_{1} \wedge \theta_{2}$, where K is the Gauss curvature of M, from (13) and the structural equation $d \theta_{2}=\omega_{21} \wedge \theta_{1}$, we get

$$
\begin{aligned}
-K \theta_{1} \wedge \theta_{2} & =-\frac{2 e_{1}(\alpha)}{3}\left(-\frac{e_{1}(\alpha)}{\alpha^{2}} \theta_{1} \wedge \theta_{2}\right)-\frac{2 e_{1}(\alpha)}{3 \alpha}\left(-\frac{2 e_{1}(\alpha)}{3 \alpha} \theta_{1} \wedge \theta_{2}\right) \\
& =\frac{10 e_{1}(\alpha)^{2}}{9 \alpha^{2}} \theta_{1} \wedge \theta_{2}
\end{aligned}
$$

Since $K=-2 \alpha^{2}$, from this we have $18 \alpha^{4}=10\left(e_{1}(\alpha)\right)^{2}$, which implies that α is constant. This is a contradiction.

Proposition 3.2. Let M be a 2-type surface in E^{3} whose position vector x is expressed as $x=x_{0}+x_{1}+x_{2}$, where x_{0} is a constant vector, and $x_{i}(i=1,2)$ are nonconstant vectors in E^{3} such that $\Delta x_{i}=\lambda_{i} x_{i}, \lambda_{i} \in R, \lambda_{1} \neq \lambda_{2}$. Assume that $\left\langle\Delta x, x-x_{0}\right\rangle=c$ holds for a constant c. Then M is of null 2-type, i.e., M is an open part of a circular cylinder.
Proof. By Lemma 3.1, the mean curvature function α of M is constant. By (6) it implies that $\Delta^{2} x=\Delta H$ is normal to M. From (5) it follows that $\lambda_{1} \lambda_{2}\left(x-x_{0}\right)$ is normal to M. If M is not of null 2-type, then the vector $x-x_{0}$ is normal to M. This is impossible. Thus M is of null 2-type. Consequently M is an open part of a circular cylinder [2].

4. Quadric hypersurfaces satisfying $\langle\Delta x, x\rangle=$ const.

Consider the set M of points $\left(x_{1}, \cdots, x_{n+1}\right)$ in the ($n+1$)-dimensional Euclidean space E^{n+1} satisfying the following equation of the second degree:

$$
\begin{equation*}
\sum_{i, j=1}^{n+1} a_{i j} x_{i} x_{j}+\sum_{i=1}^{n+1} b_{i} x_{i}+d=0 \tag{15}
\end{equation*}
$$

where $a_{i j}, b_{j}, d$ are real numbers. The equation can be experssed as in the following form

$$
\langle A x+b, x\rangle+d=0,
$$

where \langle,$\rangle is the usual inner product of E^{n+1}$, for the matrix $A=\left(a_{i j}\right)$ and vectors $x=\left[\begin{array}{c}x_{1} \\ \vdots \\ x_{n+1}\end{array}\right], b=\left[\begin{array}{c}b_{1} \\ \vdots \\ b_{n+1}\end{array}\right]$. We can assume without loss of generality that the matrix $A=\left(a_{i j}\right)$ is symmetric and A is not a zero matrix. If the left side of the equation (15) is reducible polynomial, then M is a hyperplane or a union of two hyperplanes. In this paper we assume that the polynomial given by the left side of (15) is irreducible over real numbers. In general the whole set M does not form a submanifold of E^{n+1}. Instead it can be shown that the subset $M^{\prime}=\left\{\left.x=\left[\begin{array}{c}x_{1} \\ \vdots \\ x_{n+1}\end{array}\right] \in M \right\rvert\, 2 A x+b \neq 0\right\}$ is an n-dimensional submanifold
of E^{n+1} by using the implicit function theorem. In this paper, we mean the hypersurface M^{\prime} by a quadric hypersurface M described by (15). We will study a quadric hypersurface M satisfying the condition $\langle\Delta x, x\rangle=c$ for a constant c, where x is the position vector of M and Δ its Laplacian. Note that the condition $\langle\Delta x, x\rangle=c$ for a constant c is invariant under an orthogonal transformation. So without loss of generalty we may assume that the matrix A is diagonal with digonal entries $\lambda_{1}, \cdots, \lambda_{n+1}$. So the equation (15) can be written as

$$
\begin{equation*}
\sum_{i=1}^{n+1} \lambda_{i} x_{i}^{2}+\sum_{i=1}^{n+1} b_{i} x_{i}+d=0 \tag{16}
\end{equation*}
$$

or

$$
\begin{equation*}
\langle A x+b, x\rangle+d=0, \tag{17}
\end{equation*}
$$

where A is the diagonal matrix $\operatorname{diag}\left[\lambda_{1}, \cdots, \lambda_{n+1}\right]$. Note again that we only consider the case that the left side of (16) is irreducible. First of all we will investigate some basic properties of quadric hypersurface M and classify the minimal quadric hypersurfaces in an elementary way.

Lemma 4.1. The vector $2 A x+b$ is a nozero normal vector to M.
Proof. Differentiating both sides of (17) in the direction of a tangent vector field X of M, we find

$$
\langle A X, x\rangle+\langle A x+b, X\rangle=0
$$

or

$$
\langle 2 A x+b, X\rangle=0
$$

This implies that $2 A x+b$ is normal to M. By assumptiom $2 A x+b$ is nonzero.
Lemma 4.2. Let $\left\{e_{1}, \cdots, e_{n}\right\}$ be a local orthonormal frame of M. Then the following holds.

$$
\begin{equation*}
\sum_{i=1}^{n}\left\langle 2 A e_{i}, e_{i}\right\rangle+\langle 2 A x+b, \Delta x\rangle=0 \tag{18}
\end{equation*}
$$

Proof. Let $\left\{e_{1}, \cdots, e_{n}\right\}$ be a local orthonormal frame of M. By Lemma 4.1 we have

$$
\left\langle 2 A x+b, e_{i}\right\rangle=0
$$

for $i=1,2, \cdots, n$. Differentiating the above equation in the direction of e_{i} we find

$$
\left\langle 2 A e_{i}, e_{i}\right\rangle+\left\langle 2 A x+b, h\left(e_{i}, e_{i}\right)\right\rangle=0
$$

where h is the second fundamental form of M. Since $\Delta x=\sum_{i=1}^{n} h\left(e_{i}, e_{i}\right)$, by summing up over i we get (18).

It is already well-known that the only minimal quadric hypersurfaces are cones described in the following lemma. But we will prove it by using Lemma 4.2 .

Lemma 4.3. If M is a minimal quadric hypersurface, then by a parallel translation and an orthogonal coordinate change, it can be described by

$$
(l-1) \sum_{i=1}^{k} x_{i}^{2}+(1-k) \sum_{i=k+1}^{k+l} x_{i}^{2}=0
$$

for integers $k, l(k, l>1, k+l \leq n+1)$.
Proof. Let M be a minmal quadric hypersurfaces described by (16). Since the condition minimality is invariant under any parallel translation and orthogonal coordinate change, we may write the equation (16) as

$$
\sum_{i=1}^{s} \lambda_{i} x_{i}^{2}+d=0\left(\lambda_{i} \neq 0, i=1, \cdots, s \leq n+1\right)
$$

or

$$
\begin{aligned}
& \sum_{i=1}^{s} \lambda_{i} x_{i}^{2}+\sum_{i=s+1}^{s+t} b_{i} x_{i}+d=0 \\
& \left(\lambda_{i} \neq 0, \quad i=1, \cdots, s, \quad b_{j} \neq 0, j=s+1, \cdots, s+t \leq n+1\right)
\end{aligned}
$$

We will show that the second description is impossible. Suppose that M is described by the second equation. Let e_{1}, \cdots, e_{n} be a local orthonormal frame of M. Since $2 A x+b$ is a normal vector field of M. Thus e_{1}, \cdots, e_{n} and $\frac{2 A x+b}{|2 A x+b|}$ form a Euclidean orthonormal frame, where $|2 A x+b|$ means the magnitude of the vector $2 A x+b$. So we have

$$
\sum_{i=1}^{n}\left\langle 2 A e_{i}, e_{i}\right\rangle+\left\langle 2 A \frac{2 A x+b}{|2 A x+b|}, \frac{2 A x+b}{|2 A x+b|}\right\rangle=\operatorname{tr}(2 A)
$$

where $\operatorname{tr}(2 A)$ is the trace of the matrix $2 A$. Since M is minimal, it follows from (18) and the above equation that

$$
\begin{equation*}
\langle 2 A(2 A x+b), 2 A x+b\rangle=\operatorname{tr}(2 A)\langle 2 A x+b, 2 A x+b\rangle \tag{19}
\end{equation*}
$$

Since $b_{s+1} \neq 0, M$ can be locally considered as a graph of the function $x_{s+1}=$ $\frac{1}{b_{s+1}}\left(-d-\sum_{i=1}^{s} \lambda_{i} x_{i}^{2}-\sum_{i=s+2}^{s+t} b_{i} x_{i}\right)$. The equation (19) can be written as

$$
\sum_{i=1}^{s} 4 \lambda_{i}^{2}\left(\operatorname{tr}(2 A)-2 \lambda_{i}\right) x_{i}^{2}-\operatorname{tr}(2 A) \sum_{i=s+1}^{s+t} b_{i}^{2}=0
$$

As x_{1}, \cdots, x_{s} are independent variables, from the above equation, we have $\lambda_{i}=\operatorname{tr}(A), i=1, \cdots, s$ and $\operatorname{tr}(2 A) \sum_{i=s+1}^{s+t} b_{i}^{2}=0$. From this we find $\lambda_{i}=0, i=$ $1, \cdots, s$, which is a contradiction. Thus we know that $b=0$, which implies $\langle A x, x\rangle+d=0$, or $\sum_{i=1}^{s} \lambda_{i} x_{i}^{2}+d=0$. The equation (19) can be simplified as

$$
\begin{equation*}
\left\langle A^{2} x, A x\right\rangle=\operatorname{tr}(A)\langle A x, A x\rangle \tag{20}
\end{equation*}
$$

Without loss of generality we may consider M as a graph of the function $x_{1}=$ $\pm \frac{1}{\sqrt{\lambda_{1}}} \sqrt{-d-\sum_{i=2}^{s} \lambda_{i} x_{i}^{2}}$. Substituting this into (20) we get

$$
\sum_{i=2}^{s} \lambda_{i}\left(\lambda_{i}^{2}-\operatorname{tr}(A) \lambda_{i}-\lambda_{1}^{2}+\operatorname{tr}(A) \lambda_{1}\right) x_{i}^{2}-\lambda_{1} d\left(\lambda_{1}-\operatorname{tr}(A)\right)=0
$$

From this we have

$$
\lambda_{i}^{2}-\operatorname{tr}(A) \lambda_{i}-\lambda_{1}^{2}+\operatorname{tr}(A) \lambda_{1}=0, i=2, \cdots, s, \lambda_{1} d\left(\lambda_{1}-\operatorname{tr}(A)\right)=0
$$

From the second equation, we have $d=0$ or $\lambda_{1}=\operatorname{tr}(A)$. If $\lambda_{1}=\operatorname{tr}(A)$, then the first equation and the condition $\lambda_{i} \neq 0, i=2, \cdots, s$ we find $\lambda_{i}=\operatorname{tr}(A), i=$ $1, \cdots, s$, which implies that $s=1$ or M and thus $\lambda_{1} x_{1}^{2}+d$ is reducible. So we have $d=0$. The first equation is factorized into

$$
\left(\lambda_{i}-\lambda_{1}\right)\left(\lambda_{i}-\left(\operatorname{tr}(A)-\lambda_{1}\right)\right)=0
$$

which implies that $\lambda_{i}=\lambda_{1}$ or $\lambda_{i}=\operatorname{tr}(A)-\lambda_{1}, i=1, \cdots, s$. If all $\lambda_{i}=\lambda_{1}$, then $\lambda \sum_{i=1}^{s} x_{i}^{2}=0$ or $x_{1}=\cdots=x_{s}=0$, which is impossible. So without loss of generality, we may assume that $\lambda_{1}=\cdots=\lambda_{k}$ and $\lambda_{k+1}=\cdots=\lambda_{s}$ for some positive integer $k, 1 \leq k<s$. Suppose that $k=1$. Then, since $\operatorname{tr}(A)=\lambda_{1}+(s-1)\left(\operatorname{tr}(A)-\lambda_{1}\right),(s-2)\left(\operatorname{tr}(A)-\lambda_{1}\right)=0$. This implies that $s=2$ or $\operatorname{tr}(A)-\lambda_{1}=0$. In any cases, the polynomial $\sum_{i=1}^{s} \lambda_{i} x_{i}^{2}$ is reducible. So we may assume that $1<k<s-1$. Let $\lambda_{1}=\lambda, \operatorname{tr}(A)-\lambda_{1}=\mu$ and $s-k=l$. From $\operatorname{tr}(A)=k \lambda+l \mu$ and $\mu=\operatorname{tr}(A)-\lambda$, we have $\mu=\frac{1-k}{l-1} \lambda$. So given quadric hypersurface can be discribed as

$$
\lambda \sum_{i=1}^{k} x_{i}^{2}+\frac{1-k}{l-1} \lambda \sum_{i=k+1}^{k+l} x_{i}^{2}=0
$$

or

$$
\begin{equation*}
(l-1) \sum_{i=1}^{k} x_{i}^{2}+(1-k) \sum_{i=k+1}^{k+l} x_{i}^{2}=0 \tag{21}
\end{equation*}
$$

for some two positive integers $k, l>1, k+l \leq n+1$. Conversely, we can show that a quadric hypersurface described by (21) is a minimal hypersurface. Let M be a quadric hypersurface in E^{n+1} discribed by (21). The equation (21) can be written as $\langle A x, x\rangle=0$, where A is an $(n+1) \times(n+1)$ diagonal matrix with diagonals $l-1, \cdots, l-1,1-k, \cdots, 1-k, 0, \cdots, 0$. Let e_{1}, \cdots, e_{n} be a local orthonormal frame of M. Since $\frac{A x}{|A x|}$ is a unit normal vector to M, we have

$$
\begin{equation*}
\left\langle A e_{1}, e_{1}\right\rangle+\cdots+\left\langle A e_{n}, e_{n}\right\rangle+\left\langle A \frac{A x}{|A x|}, \frac{A x}{|A x|}\right\rangle=\operatorname{tr}(A)=k(l-1)+l(1-k)=l-k . \tag{22}
\end{equation*}
$$

By using (21) we have

$$
\begin{aligned}
\left\langle A \frac{A x}{|A x|}, \frac{A x}{|A x|}\right\rangle & =\frac{(l-1)^{3} \sum_{i=1}^{k} x_{i}^{2}+(1-k)^{3} \sum_{i=k+1}^{k+l} x_{i}^{2}}{(l-1)^{2} \sum_{i=1}^{k} x_{i}^{2}+(1-k)^{2} \sum_{i=k+1}^{k+l} x_{i}^{2}} \\
& =\frac{(l-1)^{3} \sum_{i=1}^{k} x_{i}^{2}+(1-l)(1-k)^{2} \sum_{i=1}^{k} x_{i}^{2}}{(l-1)^{2} \sum_{i=1}^{k} x_{i}^{2}+(1-l)(1-k) \sum_{i=1}^{k} x_{i}^{2}} \\
& =l-k .
\end{aligned}
$$

So from (22) and the above equation we get

$$
\begin{equation*}
\left\langle A e_{1}, e_{1}\right\rangle+\cdots+\left\langle A e_{n}, e_{n}\right\rangle=0 \tag{23}
\end{equation*}
$$

By similar computation in Lemma 4.2, we have

$$
\left\langle A e_{1}, e_{1}\right\rangle+\cdots+\left\langle A e_{n}, e_{n}\right\rangle+\langle A x, \Delta x\rangle=0
$$

This and (23) imply that $\langle A x, \Delta x\rangle=0$. Subsequently we have $\Delta x=0$. So we can conclude that M is minimal.

From now on we assume that M is a quadric hypersurface described by $\langle A x+b, x\rangle+d=0$ for an $(n+1) \times(n+1)$ daigoanl matrix A with diagonal entries $\lambda_{1}, \cdots, \lambda_{n+1}$ and a constant vector $b=\left[\begin{array}{c}b_{1} \\ \vdots \\ b_{n+1}\end{array}\right]$ in E^{n+1} and satisfies $\langle\Delta x, x\rangle=c$ for a constant c.

Lemma 4.4. Assume that $c \neq 0$. Then the following holds.

$$
\begin{aligned}
& \operatorname{tr}(2 A)\langle 2 A x+b, 2 A x+b\rangle\langle 2 A x+b, x\rangle-\langle 2 A(2 A x+b), 2 A x+b\rangle\langle 2 A x+b, x\rangle \\
& +c\langle 2 A x+b, 2 A x+b\rangle^{2}=0 .
\end{aligned}
$$

Proof. Let $\left\{e_{1}, \cdots, e_{n}\right\}$ be a local orthonormal frame of M. Then by Lemma 4.2 the following holds.

$$
\begin{equation*}
\sum_{i=1}^{n}\left\langle 2 A e_{i}, e_{i}\right\rangle+\langle 2 A x+b, \Delta x\rangle=0 \tag{24}
\end{equation*}
$$

Also we have

$$
\begin{equation*}
\sum_{i=1}^{n}\left\langle 2 A e_{i}, e_{i}\right\rangle+\left\langle 2 A \frac{2 A x+b}{|2 A x+b|}, \frac{2 A x+b}{|2 A x+b|}\right\rangle=\operatorname{tr}(2 A) \tag{25}
\end{equation*}
$$

Since both $2 A x+b$ and Δx are normal to M, there exists a scalar function $f(x)$ defined on M such that $\Delta x=f(x)(2 A x+b)$. This and (24) imply that $\sum_{i=1}^{n}\left\langle 2 A e_{i}, e_{i}\right\rangle=-f(x)\langle 2 A x+b, 2 A x+b\rangle$. Substituting this into (25), we have

$$
\operatorname{tr}(2 A)-\frac{\langle 2 A(2 A x+b), 2 A x+b\rangle}{\langle 2 A x+b, 2 A x+b\rangle}+f(x)\langle 2 A x+b, 2 A x+b\rangle=0
$$

From this and $\langle\Delta x, x\rangle=f(x)\langle 2 A x+b, x\rangle=c$, it follows that

$$
\operatorname{tr}(2 A)-\frac{\langle 2 A(2 A x+b), 2 A x+b\rangle}{\langle 2 A x+b, 2 A x+b\rangle}+\frac{c}{\langle 2 A x+b, x\rangle}\langle 2 A x+b, 2 A x+b\rangle=0
$$

or

$$
\begin{aligned}
& \operatorname{tr}(2 A)\langle 2 A x+b, 2 A x+b\rangle\langle 2 A x+b, x\rangle-\langle 2 A(2 A x+b), 2 A x+b\rangle\langle 2 A x+b, x\rangle \\
& +c\langle 2 A x+b, 2 A x+b\rangle^{2}=0 .
\end{aligned}
$$

We proceed two cases seperately.
Case 1. $\langle\Delta x, x\rangle=0$
If $\Delta x=0$, then M is a minimal hypersurface. Assume that M is nonminimal, that is, $\Delta x \neq 0$. As both of Δx and $2 A x+b$ are normal to M, there exists a nonzero scalar funtion $f(x)$ defined on M such that $\Delta x=f(x)(2 A x+b)$. From $0=\langle\Delta x, x\rangle=f(x)\langle 2 A x+b, x\rangle$, we get $\langle 2 A x+b, x\rangle=0$. From this and $\langle A x+b, x\rangle+d=0$, we have $\langle A x, x\rangle=d$. We can deduce that $A x$ is a normal vector field of . Since $2 A x+b$ is also normal, we can see that if b is nonzero vector, then b is a constant normal vector of M. As M is not a hyperplane, it is impossible. So we can say that $b=0$ and consequently $\langle A x, x\rangle=0$. Therefore we can conclude that a quadric hypersurface satisfies $\langle\Delta x, x\rangle=0$, then M is a minimal quadric hypersurface described in Lemma 4.3 or a nonminimal quadric hypersurface described by $\langle A x, x\rangle=0$ for a diagonal matrix A.

Case 2. $\langle\Delta x, x\rangle=c \neq 0$
First we will show that if $\lambda_{i}=0$, then $b_{i}=0$ for $i \in\{1, \cdots, n+1\}$. Suppose that $\lambda_{1}=0$ and $b_{1} \neq 0$. Then M can be locally considered a graph of function $x_{1}=\frac{1}{b_{1}}\left(-d-\sum_{i=2}^{n+1} \lambda_{i} x_{i}^{2}-\sum_{i=2}^{n+1} b_{i} x_{i}\right)$, since $\langle A x+b, x\rangle=d$. Lemma 4.2 and $\langle A x+b, x\rangle+d=0$ imply that

$$
\begin{align*}
& \operatorname{tr}(2 A)\langle 2 A x+b, 2 A x+b\rangle(\langle A x, x\rangle-d)-\langle 2 A(2 A x+b), 2 A x+b\rangle(\langle A x, x\rangle-d) \\
& +c\langle 2 A x+b, 2 A x+b\rangle^{2}=0 . \tag{26}
\end{align*}
$$

We can observe the left side of (26) is a polynomial of x_{2}, \cdots, x_{n+1}, which are independent variables. So it must be identically zero. If we consider the coefficients of the term $x_{i}^{4}, i=2, \cdots, n+1$ of this polynomial, we find

$$
4 \operatorname{tr}(2 A) \lambda_{i}^{3}-8 \lambda_{i}^{4}+16 c \lambda_{i}^{4}=0, i=2, \cdots, n+1
$$

This implies that

$$
\begin{equation*}
\lambda_{i}=0 \text { or }(2-4 c) \lambda_{i}=\operatorname{tr}(2 A), i=2, \cdots, n+1 . \tag{27}
\end{equation*}
$$

Now consider the coefficients of $x_{i}^{2} x_{j}^{2}(2 \leq i, j \leq n+1, i \neq j)$. Then we find

$$
\begin{equation*}
4 \operatorname{tr}(2 A)\left(\lambda_{i}^{2} \lambda_{j}+\lambda_{j}^{2} \lambda_{i}\right)-8\left(\lambda_{i}^{3} \lambda_{j}+\lambda_{j}^{3} \lambda_{i}\right)+32 c \lambda_{i}^{2} \lambda_{j}^{2}=0 . \tag{28}
\end{equation*}
$$

If $2-4 c=0$, then from (27) we find $\operatorname{tr}(2 A)=0$. This and (28) imply that all λ_{i} are equally zero. It's a contradiction. So we can see that $2-4 c \neq 0$. Consequently from (27) we may assume that

$$
\lambda_{i}=\lambda \neq 0, i=2, \cdots, k
$$

and

$$
\lambda_{i}=0, i=k+1, \cdots, n+1
$$

So the equation (26) can be written as

$$
\begin{array}{r}
\operatorname{tr}(2 A)\left(4 \lambda^{2} \sum_{i=2}^{k} x_{i}^{2}+4 \lambda \sum_{i=2}^{k} b_{i} x_{i}+\sum_{i=1}^{n+1} b_{i}^{2}\right)\left(\lambda \sum_{i=2}^{k} x_{i}^{2}-d\right) \\
-\left(8 \lambda^{3} \sum_{i=2}^{k} x_{i}^{2}+8 \lambda^{2} \sum_{i=2}^{k} b_{i} x_{i}+2 \lambda \sum_{i=2}^{k} b_{i}^{2}\right)\left(\lambda \sum_{i=2}^{k} x_{i}^{2}-d\right) \\
+c\left(4 \lambda^{2} \sum_{i=2}^{k} x_{i}^{2}+4 \lambda \sum_{i=2}^{k} b_{i} x_{i}+\sum_{i=1}^{n+1} b_{i}^{2}\right)^{2}=0 . \tag{29}
\end{array}
$$

If we consider the coefficient of the term $x_{2} x_{i}(i=3, \cdots, k)$ of the left side of (29), it is equal to $32 c \lambda^{2} b_{2} b_{i}$, which must be zero. Suppose that $b_{2} \neq 0$. It follows that $b_{i}=0, i=3, \cdots, k$. So the coefficients of the terms x_{3}^{2} and x_{2}^{2} are equals to

$$
-4 d \lambda^{2} \operatorname{tr}(2 A)+\operatorname{tr}(2 A) \lambda\left(\sum_{i=1}^{n+1} b_{i}^{2}\right)+8 d \lambda^{3}-2 \lambda^{2} b_{2}^{2}+8 c \lambda^{2}\left(\sum_{i=1}^{n+1} b_{i}^{2}\right)
$$

and

$$
-4 d \lambda^{2} \operatorname{tr}(2 A)+\operatorname{tr}(2 A) \lambda\left(\sum_{i=1}^{n+1} b_{i}^{2}\right)+8 d \lambda^{3}-2 \lambda^{2} b_{2}^{2}+8 c \lambda^{2}\left(\sum_{i=1}^{n+1} b_{i}^{2}\right)+16 \lambda^{2} c b_{2}^{2}
$$

respectively. Since both of them are equal to zero, we get $b_{2}=0$, which is a contradiction. So we can say that $b_{i}=0, i=2, \cdots, k$. The equation (26) can be rewritten as

$$
\begin{array}{r}
\operatorname{tr}(2 A)\left(4 \lambda^{2} \sum_{i=2}^{k} x_{i}^{2}+b_{1}^{2}+\sum_{i=k+1}^{n+1} b_{i}^{2}\right)\left(\lambda \sum_{i=2}^{k} x_{i}^{2}-d\right) \\
-8 \lambda^{3}\left(\sum_{i=2}^{k} x_{i}^{2}\right)\left(\lambda \sum_{i=2}^{k} x_{i}^{2}-d\right)+c\left(4 \lambda^{2} \sum_{i=2}^{k} x_{i}^{2}+b_{1}^{2}+\sum_{i=k+1}^{n+1} b_{i}^{2}\right)^{2}=0 \tag{30}
\end{array}
$$

Then the coefficients of $\left(\sum_{i=2}^{k} x_{i}^{2}\right)^{2}, \sum_{i=2}^{k} x_{i}^{2}$ and the constant term of the left side of (30) are equal to

$$
\begin{gathered}
4 \lambda^{3}(\operatorname{tr}(2 A)-2 \lambda+4 c \lambda), \\
\operatorname{tr}(2 A)\left(-4 d \lambda^{2}+\left(b_{1}^{2}+\sum_{i=k+1}^{n+1} b_{i}^{2}\right) \lambda\right)+8 d \lambda^{3}+8 c\left(b_{1}^{2}+\sum_{i=k+1}^{n+1} b_{i}^{2}\right) \lambda^{2}
\end{gathered}
$$

and

$$
-\operatorname{tr}(2 A) d\left(b_{1}^{2}+\sum_{i=k+1}^{n+1} b_{i}^{2}\right)+c\left(b_{1}^{2}+\sum_{i=k+1}^{n+1} b_{i}^{2}\right)^{2}
$$

respectively. They must be equal to zero. Substituting $\operatorname{tr}(2 A)=2(k-1) \lambda$ into the above coefficients, we have

$$
\begin{gathered}
k-1=1-2 c \\
(k-1)\left(-4 d \lambda+b_{1}^{2}+\sum_{i=k+1}^{n+1} b_{i}^{2}\right)+4 d \lambda+4 c\left(b_{1}^{2}+\sum_{i=k+1}^{n+1} b_{i}^{2}\right)=0
\end{gathered}
$$

and

$$
-2(k-1) d \lambda\left(b_{1}^{2}+\sum_{i=k+1}^{n+1} b_{i}^{2}\right)+c\left(b_{1}^{2}+\sum_{i=k+1}^{n+1} b_{i}^{2}\right)^{2}=0
$$

Substituting the first equation into the second one and the third one, we find

$$
\left(b_{1}^{2}+\sum_{i=k+1}^{n+1} b_{i}^{2}\right)+8 c d \lambda+2 c\left(b_{1}^{2}+\sum_{i=k+1}^{n+1} b_{i}^{2}\right)=0
$$

and

$$
-2 d \lambda+4 c d \lambda+c\left(b_{1}^{2}+\sum_{i=k+1}^{n+1} b_{i}^{2}\right)=0
$$

Multiplying the number 2 at both sides of the second equation and subtracting it from the first equation, we get $4 d \lambda=-\left(b_{1}^{2}+\sum_{i=k+1}^{n+1} b_{i}^{2}\right)$. Substituting this into the first equation, we find $b_{1}^{2}+\sum_{i=k+1}^{n+1} b_{i}^{2}=0$, which is a contradiction. So we may assume that $\lambda_{i}=0$ implies that $b_{i}=0, i=1, \cdots, n+1$. Thus $\langle A x+b, x\rangle+$ $d=0$ can be written as $\sum_{i=1}^{k} \lambda_{i} x_{i}^{2}+\sum_{i=1}^{k} b_{i} x_{i}+d=0$ or $\sum_{i=1}^{k} \lambda_{i}\left(x_{i}+\frac{b_{i}}{2 \lambda_{i}}\right)^{2}=e$ for a constant e and the equation (26) can be given as

$$
\begin{array}{r}
\operatorname{tr}(2 A)\left\{4 \sum_{i=1}^{k} \lambda_{i}^{2}\left(x_{i}+\frac{b_{i}}{2 \lambda_{i}}\right)^{2}\left(\sum_{i=1}^{k} \lambda_{i} x_{i}^{2}-d\right)-\left(8\left(\sum_{i=1}^{k} \lambda_{i}^{3}\left(x_{i}+\frac{b_{i}}{2 \lambda_{i}}\right)^{2}\right)\left(\sum_{i=1}^{k} \lambda_{i} x_{i}^{2}-d\right)\right.\right. \\
+c\left(4 \sum_{i=1}^{k} \lambda_{i}^{2}\left(x_{i}+\frac{b_{i}}{2 \lambda_{i}}\right)^{2}\right)^{2}=0
\end{array}
$$

or

$$
\begin{equation*}
\left(\sum_{i=1}^{k} \lambda_{i}^{2}\left(\operatorname{tr}(2 A)-2 \lambda_{i}\right)\left(x_{i}+\frac{b_{i}}{2 \lambda_{i}}\right)^{2}\right)\left(\sum_{i=1}^{k} \lambda_{i} x_{i}^{2}-d\right)+4 c\left(\sum_{i=1}^{k} \lambda_{i}^{2}\left(x_{i}+\frac{b_{i}}{2 \lambda_{i}}\right)^{2}\right)^{2}=0 \tag{31}
\end{equation*}
$$

Suppose $b_{1} \neq 0$. Locally we may consider M as the graph of the function $x_{1}= \pm \sqrt{\frac{1}{\lambda_{1}}\left(e-\sum_{i=2}^{k} \lambda_{i}\left(x_{i}+\frac{b_{i}}{2 \lambda_{i}}\right)^{2}\right.}-\frac{b_{1}}{2 \lambda_{1}}$. Substituting this function into (31)
we find

$$
\begin{align*}
g\left(x_{2}, \cdots, x_{k}\right)\left(e-d+\frac{b_{1}^{2}}{4 \lambda_{1}}-\sum_{i=2}^{k} \frac{b_{i}^{2}}{4 \lambda_{i}}-\sum_{i=2}^{k} b_{i} x_{i}\right. & \pm b_{1} \sqrt{\frac{1}{\lambda_{1}}\left(e-\sum_{i=2}^{k} \lambda_{i}\left(x_{i}+\frac{b_{i}}{2 \lambda_{i}}\right)^{2}\right)} \\
& +4 c h\left(x_{2}, \cdots, x_{k}\right)^{2}=0 \tag{32}
\end{align*}
$$

where

$$
g\left(x_{2}, \cdots, x_{k}\right)=\sum_{i=2}^{k} \lambda_{i}^{2}\left(\operatorname{tr}(2 A)-2 \lambda_{i}\right)\left(x_{i}+\frac{b_{i}}{2 \lambda_{i}}\right)^{2}+\lambda_{1}\left(\operatorname{tr}(2 A)-2 \lambda_{1}\right)\left(e-\sum_{i=2}^{k} \lambda_{i}\left(x_{i}+\frac{b_{i}}{2 \lambda_{i}}\right)^{2}\right)
$$

and

$$
h\left(x_{2}, \cdots, x_{k}\right)=\sum_{i=2}^{k} \lambda_{i}^{2}\left(x_{i}+\frac{b_{i}}{2 \lambda_{i}}\right)^{2}+\lambda_{1}\left(e-\sum_{i=2}^{k} \lambda_{i}\left(x_{i}+\frac{b_{i}}{2 \lambda_{i}}\right)^{2}\right) .
$$

If $g\left(x_{2}, \cdots, x_{k}\right)$ is not identically zero, then a rational function is equal to a irrational function because of (32). So we have $h\left(x_{2}, \cdots, x_{k}\right)=0$, which implies that $\lambda_{i}=\lambda_{1}, i=2, \cdots, k$ and $e=0$. This implies that $\sum_{i=1}^{k} \lambda_{i}\left(x+\frac{b_{i}}{2 \lambda_{i}}\right)^{2}=$ $e=0$ or $\lambda_{1} \sum_{i=1}^{k}\left(x+\frac{b_{i}}{2 \lambda_{1}}\right)^{2}=0$. It is a contradiction. So we may conclude that $b_{i}=0, i=1, \cdots, k$. Thus equation (26) can be written as

$$
-\operatorname{tr}(2 A)\langle 2 A x, 2 A x\rangle(2 d)+\left\langle(2 A)^{2} x, 2 A x\right\rangle(2 d)+c\langle 2 A x, 2 A x\rangle^{2}=0
$$

or

$$
-\operatorname{tr}(A)\langle A x, A x\rangle d+\left\langle A^{2} x, A x\right\rangle d+c\langle A x, A x\rangle^{2}=0
$$

By this and similar arguments we have $\lambda_{i}=\lambda_{1}, i=2, \cdots, k$. This implies that if $k=n+1$, then M is a hypersphere and if $k<n+1$, then M is a spherical cylinder. Combining results in Case 1 and Case 2, we have the following proposition.
Proposition 4.5. If a quadric hypersurface M described by (16) in E^{n+1} satisfies $\langle\Delta x, x\rangle=c$ for a constant c, then it is one of the followings:
(1) a minmal quadric hypersurface.
(2) a nonminimal quadric hypersurface described by $\langle A x, x\rangle=0$ for a diagonal matrix A.
(3) a hypersphere.
(4) a spherical cylinder.

References

[1] B.-Y. Chen, Total Mean Curvature and Submanifolds of Finite Type, World Scientific, Siganpore and New Jersey, 1984.
[2] B.-Y. Chen, Null 2-type surfaces in E^{3} are circular cylinders, Kodai Math. J. 11 (1988), 295-299.
[3] B.-Y. Chen, F. Dillen and H. Z. Song, Quadric hypersurfaces of finite type, Colloq. Math. 63 (1992), no. 2, 145-152 145-152.
[4] Th. Hasanis and Th. Vlachos, a local classification of 2-type surfaces in S^{3}, Proc. Amer. Math. Soc. 112 (1991), no. 2, 533-538.
[5] Th. Hasanis and Th. Vlachos, Spherical 2-type hypersurface, J. Geom. 40 (1991), 82-94.
Changrim Jang
Dept. of Mathematcs, College of Natural Science
University of Ulsan 44610, Ulsan, Korea
E-mail address: crjang@mail.ulsan.ac.kr
Haerae Jo
Ulsan Joongang High School 44434, Ulsan, Korea
E-mail address: haerae@hanmail.net

[^0]: Received September 1, 2017; Accepted September 28, 2017.
 2010 Mathematics Subject Classification. 53C40.
 Key words and phrases. Laplacian, 2-type surfaces, quadric hypersurfaces.

