• Title/Summary/Keyword: Hyperbolic system

Search Result 170, Processing Time 0.033 seconds

GLOBAL SOLUTIONS OF THE EXPONENTIAL WAVE EQUATION WITH SMALL INITIAL DATA

  • Huh, Hyungjin
    • Bulletin of the Korean Mathematical Society
    • /
    • v.50 no.3
    • /
    • pp.811-821
    • /
    • 2013
  • We study the initial value problem of the exponential wave equation in $\math{R}^{n+1}$ for small initial data. We shows, in the case of $n=1$, the global existence of solution by applying the formulation of first order quasilinear hyperbolic system which is weakly linearly degenerate. When $n{\geq}2$, a vector field method is applied to show the stability of a trivial solution ${\phi}=0$.

LORENTZIAN SURFACES WITH CONSTANT CURVATURES AND TRANSFORMATIONS IN THE 3-DIMENSIONAL LORENTZIAN SPACE

  • Park, Joon-Sang
    • Journal of the Korean Mathematical Society
    • /
    • v.45 no.1
    • /
    • pp.41-61
    • /
    • 2008
  • We study Lorentzian surfaces with the constant Gaussian curvatures or the constant mean curvatures in the 3-dimensional Lorentzian space and their transformations. Such surfaces are associated to the Lorentzian Grassmannian systems and some transformations on such surfaces are given by dressing actions on those systems.

Magnetohydrodynamics Code Basics

  • RYU DONGSU
    • Journal of The Korean Astronomical Society
    • /
    • v.34 no.4
    • /
    • pp.209-213
    • /
    • 2001
  • This paper describes the numerical solution to the hyperbolic system of magnetohydrodynamic (MHD) equations. First, by pointing out the approximations involved, the deal MHD equations are presented. Next, the MHD waves as well as the associated shocks and discontinuities, are presented. Then, based on the hyperbolicity of the ideal MHD equations, the application of upwind schemes, which have been developed for hydrodynamics, is discussed to solve the equations numerically. As an definite example, one and multi-dimensional codes based on the Total Variation Diminishing scheme are presented. The treatment in the multi-dimensional code, which maintains ${\nabla}{\cdot}$B = 0, is described. Through tests, the robustness of the upwind schemes for MHDs is demonstrated.

  • PDF

어군행동 원격감시 시스템의 개발에 관한 연구 ( 1 ) - 하드웨어와 소프트웨어 - ( Development of the Underwater Telemetry System to Monitor the Behavior of Fish ( 1 ) - Hardware and Software - )

  • 신형일
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.30 no.4
    • /
    • pp.263-272
    • /
    • 1994
  • The hardware and the software of the prototype telemtry system to monitor the behavior of the fish are designed. This system consistes of five parts I. e. three omni-directional hydrophones, three ultrasonic receivers, a single board computer for the signal processing, two RF transceivers for the data communication, and a personnel computer. The sensitivty of the hydrophones is -170dB(re 1V/$\mu$Pa), the gain and the 3dB receiving bandwidth of the ultrasonic receivers are 115dB and 1500Hz respectively, and the sampling period is 33.3$\mu$sec in the signal processing part. The positioning error of the system using hyperbolic method is estimated to be less than 0.2m in case that the pinger locates inside of the baselines. The perfomance of the system considering a practical use was examined by numerical simulation and a water tank test of a pinger tracking experiment. In results, the system developed in prototype was confirmed that it could be useful for monitoring the behavior of fish in the limited water area.

  • PDF

HOPF BIFURCATION OF CODIMENSION ONE AND DYNAMICAL SIMULATION FOR A 3D AUTONOMOUS CHAOTIC SYSTEM

  • Li, Xianyi;Zhou, Zhengxin
    • Bulletin of the Korean Mathematical Society
    • /
    • v.51 no.2
    • /
    • pp.457-478
    • /
    • 2014
  • In this paper, a 3D autonomous system, which has only stable or non-hyperbolic equilibria but still generates chaos, is presented. This system is topologically non-equivalent to the original Lorenz system and all Lorenz-type systems. This motivates us to further study some of its dynamical behaviors, such as the local stability of equilibrium points, the Lyapunov exponent, the dissipativity, the chaotic waveform in time domain, the continuous frequency spectrum, the Poincar$\acute{e}$ map and the forming mechanism for compound structure of its special cases. Especially, with the help of the Project Method, its Hopf bifurcation of codimension one is in detailed formulated. Numerical simulation results not only examine the corresponding theoretical analytical results, but also show that this system possesses abundant and complex dynamical properties not solved theoretically, which need further attention.

Determination of Buffering Capacity of Hygoscopic Fabrics Under Subzero Conditions by Using Man-Clothing-Environment Simulator

  • Kim, Eun-Ae;Shinjung Yoo;Kim, Jeongjin;Junghee Yeo
    • Proceedings of the Korean Fiber Society Conference
    • /
    • 2003.10a
    • /
    • pp.51-52
    • /
    • 2003
  • In order to understand the buffering behavior of hygroscopic fabric under subzero conditions, microclimates of the wool and PET clothing system were measured and compared. Vertical type Man-Clothing-Environment simulator was used to measure the microclimate at the environmental temperature of -10$^{\circ}C$. Buffering capacity was quantified by calculating from the depth and width of the hyperbolic curve of the graph. Hydrophilic wool fabrics showed better buffering capacity at the transient state than hydrophobic PET fabrics; which is attributed to the heat of sorption.

  • PDF

Compact Catadioptric Wide Imaging with Secondary Planar Mirror

  • Ko, Young-Jun;Yi, Soo-Yeong
    • Current Optics and Photonics
    • /
    • v.3 no.4
    • /
    • pp.329-335
    • /
    • 2019
  • Wide FOV imaging systems are important for acquiring rich visual information. A conventional catadioptric imaging system deploys a camera in front of a curved mirror to acquire a wide FOV image. This is a cumbersome setup and causes unnecessary occlusions in the acquired image. In order to reduce both the burden of the camera deployment and the occlusions in the images, this study uses a secondary planar mirror in the catadioptric imaging system. A compact design of the catadioptric imaging system and a condition for the position of the secondary planar mirror to satisfy the central imaging are presented. The image acquisition model of the catadioptric imaging system with a secondary planar mirror is discussed based on the principles of geometric optics in this study. As a backward mapping, the acquired image is restored to a distortion-free image in the experiments.

Modified adaptive complementary sliding mode control for the longitudinal motion stabilization of the fully-submerged hydrofoil craft

  • Liu, Sheng;Niu, Hongmin;Zhang, Lanyong;Xu, Changkui
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.11 no.1
    • /
    • pp.584-596
    • /
    • 2019
  • This paper presents a Modified Adaptive Complementary Sliding Mode Control (MACSMC) system for the longitudinal motion control of the Fully-Submerged Hydrofoil Craft (FSHC) in the presence of time varying disturbance and uncertain perturbations. The nonlinear disturbance observer is designed with less conservatism that only boundedness of the derivative of the disturbance is required. Then, a complementary sliding mode control system combined with adaptive law is designed to reduce the bound of stabilization error with fast convergence. In particularly, the modified complementary sliding mode surface which contains the estimation of the disturbance can reduce the switching gain and retain the normal performance of the system. Moreover, a hyperbolic tangent function contained in the control law is utilized to attenuate the chattering of the actuator. The global asymptotic stability of the closed-loop system is demonstrated utilizing the Lyapunov stability theory. Ultimately, the simulation results show the effectiveness of the proposed approach.

Boundary Control of an Axially Moving Belt System in a Thin-Metal Production Line

  • Hong, Keum-Shik;Kim, Chang-Won;Hong, Kyung-Tae
    • International Journal of Control, Automation, and Systems
    • /
    • v.2 no.1
    • /
    • pp.55-67
    • /
    • 2004
  • In this paper, an active vibration control of a translating steel strip in a zinc galvanizing line is investigated. The control objectives in the galvanizing line are to improve the uniformity of the zinc deposit on the strip surfaces and to reduce the zinc consumption. The translating steel strip is modeled as a moving belt equation by using Hamilton’s principle for systems with moving mass. The total mechanical energy of the strip is considered to be a Lyapunov function candidate. A nonlinear boundary control law that assures the exponential stability of the closed loop system is derived. The existence of a closed-loop solution is shown by proving that the closed-loop dynamics is dissipative. Simulation results are provided.

Vibration Control of an Axially Moving String: Inclusion of the Dynamics of Electro Hydraulic Servo System

  • Kim, Chang-Won;Hong, Keum-Shik;Kim, Yong-Shik
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.342-347
    • /
    • 2003
  • In this paper, an active vibration control of a translating tensioned string with the use of an electro-hydraulic servo mechanism at the right boundary is investigated. The dynamics of the moving strip is modeled as a string with tension by using Hamilton’s principle for the systems with changing mass. The control objective is to suppress the transverse vibrations of the strip via boundary control. A right boundary control law in the form of current input to the servo valve based upon the Lyapunov’s second method is derived. It is revealed that a time-varying boundary force and a suitable passive damping at the right boundary can successfully suppress the transverse vibrations. The exponential stability of the closed loop system is proved. The effectiveness of the control laws proposed is demonstrated via simulations.

  • PDF