• 제목/요약/키워드: Hyperbolic Model

검색결과 284건 처리시간 0.026초

목포항에서의 풍파로 인한 범람 (Wave Inundation at Mokpo Harbor)

  • 이정렬;강주환;문승록;임흥수
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2006년도 학술발표회 논문집
    • /
    • pp.574-578
    • /
    • 2006
  • Tidal amplification by construction of the sea-dike and sea-walls had been detected not only near Mokpo Harbor but also at Chungkye Bay which is connected with Mokpo Harbor by a narrow channel. This brings about increase of tidal flat area and in particular increase of surge-wave combined runup during storms. The purpose of this study is to examine an efficient operational model that can be used by civil defense agencies for real-time prediction and fast warnings on wind waves and storm surges. Instead of using commercialized wave models such as WAM, SWAN, the wind waves are simulated by using a new concept of wavelength modulation to enhance broader application of the hyperbolic wave model of the mild-slope equation type. Furthermore, The predicting system is composed of easy and economical tools for inputting depth data of complex bathymetry and enormous tidal flats such as Mokpo coastal zone. The method is applied to Chungkye Bay, and possible inundation features at Mokpo Harbor are analyzed.

  • PDF

A transport model for high-frequency vibrational power flows in coupled heterogeneous structures

  • Savin, Eric
    • Interaction and multiscale mechanics
    • /
    • 제1권1호
    • /
    • pp.53-81
    • /
    • 2008
  • The theory of microlocal analysis of hyperbolic partial differential equations shows that the energy density associated to their high-frequency solutions satisfies transport equations, or radiative transfer equations for randomly heterogeneous materials with correlation lengths comparable to the (small) wavelength. The main limitation to the existing developments is the consideration of boundary or interface conditions for the energy and power flow densities. This paper deals with the high-frequency transport regime in coupled heterogeneous structures. An analytical model for the derivation of high-frequency power flow reflection/transmission coefficients at a beam or a plate junction is proposed. These results may be used in subsequent computations to solve numerically the transport equations for coupled systems, including interface conditions. Applications of this research concern the prediction of the transient response of slender structures impacted by acoustic or mechanical shocks.

1차와 2차 침하를 고려한 압밀침하량 계산식의 제안 (Calculation of Consolidation Settlement considering Primary and Secondary Settlement)

  • 이달원;정성규
    • 한국농공학회:학술대회논문집
    • /
    • 한국농공학회 2003년도 학술발표논문집
    • /
    • pp.159-162
    • /
    • 2003
  • In this study, it was proposed that a modified equation for estimating consolidation settlement on soft clay ground, which separate total settlement into primary and secondary settlement equation. The settlement by the proposed equation and by the measured settlements from laboratory model test was compared and verified for its application. It was appeared that the proposed equation from the laboratory model test approached to be more realistic comparing to the result of Terzaghi's equation. From the above application, it was concluded that the final settlement prediction by the Hyperbolic, Asaoka methods is needed to measure the initial period of settlement but the proposed equation could be much applicable in the lacking condition of measured data of the initial period.

  • PDF

A BIO-ECONOMIC MODEL OF TWO-PREY ONE-PREDATOR SYSTEM

  • Kar, T.K.;Chattopadhyay, S.K.;Pati, Chandan Kr.
    • Journal of applied mathematics & informatics
    • /
    • 제27권5_6호
    • /
    • pp.1411-1427
    • /
    • 2009
  • We propose a model based on Lotka-Volterra dynamics with two competing spices which are affected not only by harvesting but also by the presence of a predator, the third species. Hyperbolic and linear response functions are considered. We derive the conditions for global stability of the system using Lyapunov function. The optimal harvest policy is studied and the solution is derived in the interior equilibrium case using Pontryagin's maximal principle. Finally, some numerical examples are discussed. The nature of variations in the two prey species and one predator species is studied extensively through graphical illustrations.

  • PDF

TRAVELLING WAVE SOLUTIONS FOR SOME NONLINEAR EVOLUTION EQUATIONS

  • Kim, Hyunsoo;Choi, Jin Hyuk
    • Korean Journal of Mathematics
    • /
    • 제23권1호
    • /
    • pp.11-27
    • /
    • 2015
  • Nonlinear partial differential equations are more suitable to model many physical phenomena in science and engineering. In this paper, we consider three nonlinear partial differential equations such as Novikov equation, an equation for surface water waves and the Geng-Xue coupled equation which serves as a model for the unidirectional propagation of the shallow water waves over a at bottom. The main objective in this paper is to apply the generalized Riccati equation mapping method for obtaining more exact traveling wave solutions of Novikov equation, an equation for surface water waves and the Geng-Xue coupled equation. More precisely, the obtained solutions are expressed in terms of the hyperbolic, the trigonometric and the rational functional form. Solutions obtained are potentially significant for the explanation of better insight of physical aspects of the considered nonlinear physical models.

코클리어 기저막 운동의 2차원 모델 해석 (Two-dimensional Model Analysis on Cochlear Basilar Membrane Motion)

  • 유선국;백승화;박상희
    • 대한의용생체공학회:의공학회지
    • /
    • 제5권2호
    • /
    • pp.161-166
    • /
    • 1984
  • In this paper, we describe an effective technique for computing the steady-state motion in a two-dimensional cochlear model. With the cochlear fluid assumed incompressible and invisid, the problem reduces to solving an integral equation for a region with yielding boundary. Using the conformal mapping, Jacobian elliptic function and hyperbolic function, a pair of second-order differential equation is derived. What we will show in this paper is that by appropriately transforming integral equation, the same computation can be performed with comparable accuracy in a short time.

  • PDF

토목섬유로 보강한 연약지반의 안정도 해석: 모형실험과 유한요소해석 (Stability Analysis of Very Soft Soils Using Geotextiles: The Role of Model Test and Finite Element Analysis)

  • 고홍석;고남영
    • 한국농공학회지
    • /
    • 제36권1호
    • /
    • pp.39-53
    • /
    • 1994
  • To investigate the behaviour of the embankment on very soft foundation reinforced geotex- files,the laboratory model test in order to analyze the elementary effects of geotextile reinfor- cement and the finite element program analyzing the stresses and deformations characteristics was carried out. A two-dimensional nonlinear finite element program called GEOTEXT(a modification of ISBILD) for the static analysis of embankment on very soft foundation reinforced geotextiles has been developed. Both linear and nonlinear hyperbolic stress-strain soil models are inclu- ded, and incremental and stage construction can be simulated. However, the program GEO- TEXT is not developed herein as an adaptable design tool for practicing engineer. It was found that the geotextile reinforcement significantly reduced the shear stresses in the foundation and decreased the vertical differential settlements at the top of the embank- ment. This influence was more pronounced as the tensile strength of the geotextile was increased.

  • PDF

Ultimate behavior of reinforced concrete cooling tower: Evaluation and comparison of design guidelines

  • Noh, Hyuk-Chun;Choi, Chang-Koon
    • Structural Engineering and Mechanics
    • /
    • 제22권2호
    • /
    • pp.223-240
    • /
    • 2006
  • Taking into account the geometrical and material nonlinearities, an ultimate behavior of reinforced concrete cooling tower shell in hyperbolic configuration is presented. The design wind pressures suggested in the guidelines of the US (ACI) and Germany (VGB), with or without the effect of internal suction, are employed in the analysis to examine the qualitative and quantitative characteristics of each design wind pressure. The geometrical nonlinearity is incorporated by the Green-Lagrange strain tensor. The nonlinear features of concrete, such as the nonlinear stress-strain relation in compression, the tensile cracking with the smeared crack model, an effect of tension stiffening, are taken into account. The biaxial stress state in concrete is represented by an improved work-hardening plasticity model. From the perspective of quality of wind pressures, the two guidelines are determined as highly correlated each other. Through the extensive analysis on the Niederaussem cooling tower in Germany, not only the ultimate load is determined but also the mechanism of failure, distribution of cracks, damage processes, stress redistributions, and mean crack width are examined.

NUMERICAL COMPARISON OF WENO TYPE SCHEMES TO THE SIMULATIONS OF THIN FILMS

  • Kang, Myungjoo;Kim, Chang Ho;Ha, Youngsoo
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • 제16권3호
    • /
    • pp.193-204
    • /
    • 2012
  • This paper is comparing numerical schemes for a differential equation with convection and fourth-order diffusion. Our model equation is $h_t+(h^2-h^3)_x=-(h^3h_{xxx})_x$, which arises in the context of thin film flow driven the competing effects of an induced surface tension gradient and gravity. These films arise in thin coating flows and are of great technical and scientific interest. Here we focus on the several numerical methods to apply the model equation and the comparison and analysis of the numerical results. The convection terms are treated with well known WENO methods and the diffusion term is treated implicitly. The diffusion and convection schemes are combined using a fractional step-splitting method.

Solvent Effect on Stress Relaxation of PET Filament Fibers and Self Diffusion of Crystallites

  • Nam Jeong Kim;Eung Ryul Kim;Sang Joon Hahn
    • Bulletin of the Korean Chemical Society
    • /
    • 제12권5호
    • /
    • pp.468-473
    • /
    • 1991
  • Viscoelastic properties of PET filament fibers on stress relaxation were investigated in the solvents of $H_2$O, 0.05% NaOH and 50% DMF using an Instron (UTM4-100 Tensilon) with solvent chamber. The theoretical stress relaxation equation derived by applying the Ree-Eyring's hyperbolic sine law to dashpot of three element non-Newtonian model was applied to the experimental stress relaxation curves, and the model parameters $G_1,G_2$, ${\alpha}$ and ${\beta}$ were obtained. By analyzing temperature dependency of the relaxation time, the values of activation entropy, activation enthalpy and activation free energy for flow in PET filament fiber were evaluated, the activation free energy being about 25.7 kcal/mol. The self diffusion coefficient and hole distance were obtained from parameters ${\alpha}$, ${\beta}$ and crystallite size in order to study the self diffusion and the orientation of crystallites in amorphous region and the effect of solvent.