• Title/Summary/Keyword: Hyperbolic

Search Result 1,013, Processing Time 0.027 seconds

Out-of-phase and in-phase vibrations and energy absorption of coupled nanoplates on the basis of surface-higher order-viscoelastic-couple stress theories

  • Guangli Fan;Maryam Shokravi;Rasool Javani;Suxa Hou
    • Steel and Composite Structures
    • /
    • v.50 no.4
    • /
    • pp.403-418
    • /
    • 2024
  • In this paper, vibration and energy absorption characteristics of a nanostructure which is composed of two embedded porous annular/circular nanoplates coupled by a viscoelastic substrate are investigated. The modified couple stress theory (MCST) and the Gurtin-Murdoch theory are applied to take into account the size and the surface effects, respectively. Furthermore, the structural damping effect is probed by the Kelvin-Voigt model and the mathematical model of the problem is developed by a new hyperbolic higher order shear deformation theory. The differential quadrature method (DQM) is employed to obtain the out-of-phase and in-phase frequencies of the structure in order to predict the dynamic response of it. The acquired results reveal that the vibration and energy absorption of the system depends on some factors such as porosity, surface stress effects, material length scale parameter, damping and spring constants of the viscoelastic foundation as well as geometrical parameters of annular/circular nanoplates. A bird's-eye view of the findings in the research paper offers a comprehensive understanding of the vibrational behavior and energy absorption capabilities of annular/circular porous nanoplates. The multidisciplinary approach and the inclusion of porosity make this study valuable for the development of innovative materials and applications in the field of nanoscience and engineering.

Rectangular Slot based Beam Focusing Dual-Band Phase Gradient Metasurface (직사각형 금속 슬롯을 활용한 이중대역 신호 집중 위상변화 메타표면)

  • Kyungsu Min;Sunggeon Kim;Icpyo Hong;Kyungwon Lee;Sunghun Jung;Myungsik Lee;Jonggwan Yook
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.27 no.5
    • /
    • pp.558-566
    • /
    • 2024
  • This study proposes method for enhancing the performance of previously developed or produced weapon systems without developing new detection equipment by using Phase Gradient Metasurfaces(PGMS). Metasurface has been studied and utilized a lot to improve the detection performance of inorganic systems, but its utilization is low due to its narrow bandwidth and complex structure. To address some of these limitations, dual-band power focusing PGMS is proposed. Its frequency independent unit cell characteristic enables creating metasurface that concentrates signals in dual-band. The designed PGMS was validated through near-field and far-field measurement, confirming signal concentration at the specified focal length and improved gain in the dual bands.

A Study on the Pore Pressure Dissipation Test of the Piezocone (피에오콘의 간극수압 소산시험에 관한 연구)

  • 황대진;김철웅
    • Geotechnical Engineering
    • /
    • v.13 no.6
    • /
    • pp.25-36
    • /
    • 1997
  • A degree of consolidation at any time can be evaluated by using cone penetration test after soil improvement. In this case, after stopping the penetration of a piezocone, pore pressure dissipation(PPD) best is carried out until the pore pressure remains constant. Since the hydraulic conductivity of soft ground is very small, it takes very long time to finish the PPD test. This research is performed to develop a method overcoming this problem of the PPD test and reducing the test time. The analyses are carried out in the following ways : an equilibrium pore pressure can be determined by using pore pressure measured in the middle of the test, which is predicted by hyperbolic, Asaoka and Hoshino methods. And this equilibrium pore pressure is compared with the one measured in a test of long duration. As a result of the study, it is found that Hoshino method is the best way to predict the equilibrium pore pressure in a teat of short duration. And it is proposed as a methodology to fond a minimal time in which we can get an equilibrium pore pressure.

  • PDF

A Study on Na/Ca Exchange Ratio in Atrial Muscle of Rabbit (토끼 심방근 세포막의 Na/Ca교환 비율에 관한 연구)

  • Kim, Eui-Yong;Hwang, Sang-Ik;Earm, Yung-E;Sung, Ho-Kyung
    • The Korean Journal of Physiology
    • /
    • v.23 no.2
    • /
    • pp.291-299
    • /
    • 1989
  • Na and Ca effects on contracture were studied in order to estimate Na/Ca exchange ratio in the isolated atrial muscle of the rabbit. All experiments were performed in tris-buffered Tyrode solution which was being aerated with 100% $O_2\;and\;kept\;at\;37^{circ}C$. To load intracellular $Na^+,\;10{-6}M$ ouabain or K-free solution were used. Contractures were induced by brier exposure of atrial muscle to Tyrode solution containing various concentrations of Ca or of Na. The results obtained were as follows: 1 ) Increasing the extracellular Ca concentration, the amplitude of contracture also increased and was maximum at 8 mM Ca-Tyrode solution. 2) The relationship between extracellular Ca concentrations and relative amplitude of the contractures showed hyperbolic pattern. By using Hill plot, the line has the slope of 1 12 which means the number of Ca binding sites of the carrier in the cell membrane. 3) The amplitude of the contracture was maximum in 0 mM Na-Tyrode solution and decreased in dose dependent manner when the Na concentration increased. 4) When the relationship between extracellular Na concentrations and the amplitude of contractures was expressed as dose-response curve, the curve showed sigmoid pattern. The line with the slope of 2.82 was obtained by using Hill plot. 5) From above all the results, it is suggested that exchange ratio of Na and Ca via Na/ca exchange system in the atrial muscle of rabbit could be 3:1 approximately.

  • PDF

Free vibration analysis of functionally graded plates with temperature-dependent properties using various four variable refined plate theories

  • Attia, Amina;Tounsi, Abdelouahed;Bedia, E.A. Adda;Mahmoud, S.R.
    • Steel and Composite Structures
    • /
    • v.18 no.1
    • /
    • pp.187-212
    • /
    • 2015
  • In this paper, various four variable refined plate theories are presented to analyze vibration of temperature-dependent functionally graded (FG) plates. By dividing the transverse displacement into bending and shear parts, the number of unknowns and governing equations for the present model is reduced, significantly facilitating engineering analysis. These theories account for parabolic, sinusoidal, hyperbolic, and exponential distributions of the transverse shear strains and satisfy the zero traction boundary conditions on the surfaces of the plate without using shear correction factors. Power law material properties and linear steady-state thermal loads are assumed to be graded along the thickness. Uniform, linear, nonlinear and sinusoidal thermal conditions are imposed at the upper and lower surface for simply supported FG plates. Equations of motion are derived from Hamilton's principle. Analytical solutions for the free vibration analysis are obtained based on Fourier series that satisfy the boundary conditions (Navier's method). Non-dimensional results are compared for temperature-dependent and temperature-independent FG plates and validated with known results in the literature. Numerical investigation is conducted to show the effect of material composition, plate geometry, and temperature fields on the vibration characteristics. It can be concluded that the present theories are not only accurate but also simple in predicting the free vibration responses of temperature-dependent FG plates.

A Study on the Applicability of Settlement Prediction Method Based on the Field Measurement in Gimpo Hangang Site (김포한강지구 계측자료를 이용한 침하예측기법의 적용성에 관한 연구)

  • Lee, Jungsang;Jeong, Jaewon;Choi, Seungchul;Chun, Byungsik
    • Journal of the Korean GEO-environmental Society
    • /
    • v.13 no.12
    • /
    • pp.35-42
    • /
    • 2012
  • There are many large-scale coastal region landfill and land development by loading to use territory efficiently, this regions are mostly soft clay ground. Constructing structures and road on the soft ground bring about engineering problems like ground shear fracture and a big amount of consolidation by bearing capacity. Improvement of soft soil is required to secure soil strength and settlement control. In improvement of soft soil, predict for the amount of settlement based on field surveyed reports are important element for estimating pre-loading banking height and the final point of consolidation. In this study, there is calculating theoretical settlement by analyzing field surveyed report and ground investigation to improvement of soft soil with pre-loading and vertical drain method. And present settlement prediction method reflect soil characteristics in Gimpo Hangang site by analysing prediction settlement and observational settlement during compaction using hyperbolic, ${\sqrt{s}}$, Asaoka method.

Signal Pattern Analysis of Ground Penetrating Radar for Detecting Road Cavities (도로동공 탐지를 위한 지표투과레이더의 신호패턴에 관한 연구)

  • Yoon, Jin-Sung;Baek, Jongeun;Choi, Yeon Woo;Choi, Hyeon;Lee, Chang Min
    • International Journal of Highway Engineering
    • /
    • v.18 no.6
    • /
    • pp.61-67
    • /
    • 2016
  • OBJECTIVES : The objective of this study is to detect road cavities using multi-channel 3D ground penetrating radar (GPR) tests owned by the Seoul Metropolitan Government. METHODS : Ground-penetrating radar tests were conducted on 204 road-cavity test sections, and the GPR signal patterns were analyzed to classify signal shape, amplitude, and phase change. RESULTS : The shapes of the GPR signals of road-cavity sections were circular or ellipsoidal in the plane image of the 3D GPR results. However, in the longitudinal or transverse direction, the signals showed mostly unsymmetrical (or symmetrical in some cases) parabolic shapes. The amplitude of the GPR signals reflected from road cavities was stronger than that from other media. No particular pattern of the amplitude was found because of nonuniform medium and utilities nearby. In many cases where road cavities extended to the bottom of the asphalt concrete layer, the signal phase was reversed. However, no reversed signal was found in subbase, subgrade, or deeper locations. CONCLUSIONS : For detecting road cavities, the results of the GPR signal-pattern analysis can be applied. In general, GPR signals on road cavity-sections had unsymmetrical hyperbolic shape, relatively stronger amplitude, and reversed phase. Owing to the uncertainties of underground materials, utilities, and road cavities, GPR signal interpretation was difficult. To perform quantitative analysis for road cavity detection, additional GPR tests and signal pattern analysis need to be conducted.

Novel quasi-3D and 2D shear deformation theories for bending and free vibration analysis of FGM plates

  • Younsi, Abderahman;Tounsi, Abdelouahed;Zaoui, Fatima Zohra;Bousahla, Abdelmoumen Anis;Mahmoud, S.R.
    • Geomechanics and Engineering
    • /
    • v.14 no.6
    • /
    • pp.519-532
    • /
    • 2018
  • In this work, two dimensional (2D) and quasi three-dimensional (quasi-3D) HSDTs are proposed for bending and free vibration investigation of functionally graded (FG) plates using hyperbolic shape function. Unlike the existing HSDT, the proposed theories have a novel displacement field which include undetermined integral terms and contains fewer unknowns. The material properties of the plate is inhomogeneous and are considered to vary continuously in the thickness direction by three different distributions; power-law, exponential and Mori-Tanaka model, in terms of the volume fractions of the constituents. The governing equations which consider the effects of both transverse shear and thickness stretching are determined through the Hamilton's principle. The closed form solutions are deduced by employing Navier method and then fundamental frequencies are obtained by solving the results of eigenvalue problems. In-plane stress components have been determined by the constitutive equations of composite plates. The transverse stress components have been determined by integrating the 3D stress equilibrium equations in the thickness direction of the FG plate. The accuracy of the present formulation is demonstrated by comparisons with the different 2D, 3D and quasi-3D solutions available in the literature.

A nonlocal quasi-3D theory for bending and free flexural vibration behaviors of functionally graded nanobeams

  • Bouafia, Khadra;Kaci, Abdelhakim;Houari, Mohammed Sid Ahmed;Benzair, Abdelnour;Tounsi, Abdelouahed
    • Smart Structures and Systems
    • /
    • v.19 no.2
    • /
    • pp.115-126
    • /
    • 2017
  • In this paper, size dependent bending and free flexural vibration behaviors of functionally graded (FG) nanobeams are investigated using a nonlocal quasi-3D theory in which both shear deformation and thickness stretching effects are introduced. The nonlocal elastic behavior is described by the differential constitutive model of Eringen, which enables the present model to become effective in the analysis and design of nanostructures. The present theory incorporates the length scale parameter (nonlocal parameter) which can capture the small scale effect, and furthermore accounts for both shear deformation and thickness stretching effects by virtue of a hyperbolic variation of all displacements through the thickness without using shear correction factor. The material properties of FG nanobeams are assumed to vary through the thickness according to a power law. The neutral surface position for such FG nanobeams is determined and the present theory based on exact neutral surface position is employed here. The governing equations are derived using the principal of minimum total potential energy. The effects of nonlocal parameter, aspect ratio and various material compositions on the static and dynamic responses of the FG nanobeam are discussed in detail. A detailed numerical study is carried out to examine the effect of material gradient index, the nonlocal parameter, the beam aspect ratio on the global response of the FG nanobeam. These findings are important in mechanical design considerations of devices that use carbon nanotubes.

A Study on p-y Curves with Pressuremeter Tests in Jeju Basalt Rock (공내재하시험을 이용한 제주 현무암의 p-y 곡선 연구)

  • Yang, Ki-Ho;Huh, Jong-Chul;Park, Jeong-Jun
    • Journal of the Korean Geosynthetics Society
    • /
    • v.14 no.4
    • /
    • pp.129-137
    • /
    • 2015
  • Recently, offshore wind farms are increasingly expected, because there are huge resource and large site in offshore. Jeju island has optimum condition for constructing a wind energy farm. Unlike the mainland, Jeju island has stratified structure distribution between rock layers sediments due to volcanic activation. In these case, it can be occur engineering problems in whole structures as well as the safety of foundation as the thickness and distribution of sediment under top rock layer can not support sufficiently the structure. One of the most obvious applications of the pressuremeter test is the solution of the problem of laterally loaded piles. A hyperbolic non-linear p-y criterion for rock is developed in this study that can be used in LPILE program, to predict the deflection, moment, and shear reponses of a shaft under the applied lateral loads. Finally, a comparison between the predicted and measured response at two different sites is shown to give an idea of the accuracy of the IFP method.