DOI QR코드

DOI QR Code

Rectangular Slot based Beam Focusing Dual-Band Phase Gradient Metasurface

직사각형 금속 슬롯을 활용한 이중대역 신호 집중 위상변화 메타표면

  • Kyungsu Min (Department of Electronic Engineering, Yonsei University) ;
  • Sunggeon Kim (Department of Electronic Engineering, Yonsei University) ;
  • Icpyo Hong (Department of Smart Information Technology Engineering, Kongju National University) ;
  • Kyungwon Lee (Naval/Land EW System R&D, LIG Nex1) ;
  • Sunghun Jung (EW AI & Jamming Technology R&D, LIG Nex1) ;
  • Myungsik Lee (Naval/Land EW System R&D, LIG Nex1) ;
  • Jonggwan Yook (Department of Electronic Engineering, Yonsei University)
  • 민경수 (연세대학교 전기전자공학과) ;
  • 김성건 (연세대학교 전기전자공학과) ;
  • 홍익표 (국립공주대학교 스마트정보기술공학과) ;
  • 이경원 (LIG넥스원(주) 전자전연구소 해상지상체계개발단) ;
  • 정성훈 (LIG넥스원(주) 전자전연구소 전자전기술개발단) ;
  • 이명식 (LIG넥스원(주) 전자전연구소 해상지상체계개발단) ;
  • 육종관 (연세대학교 전기전자공학과)
  • Received : 2024.04.27
  • Accepted : 2024.08.23
  • Published : 2024.10.05

Abstract

This study proposes method for enhancing the performance of previously developed or produced weapon systems without developing new detection equipment by using Phase Gradient Metasurfaces(PGMS). Metasurface has been studied and utilized a lot to improve the detection performance of inorganic systems, but its utilization is low due to its narrow bandwidth and complex structure. To address some of these limitations, dual-band power focusing PGMS is proposed. Its frequency independent unit cell characteristic enables creating metasurface that concentrates signals in dual-band. The designed PGMS was validated through near-field and far-field measurement, confirming signal concentration at the specified focal length and improved gain in the dual bands.

Keywords

Acknowledgement

이 연구는 701-2차 사업의 고이득 레이돔 설계기술 과제 연구비의 지원으로 연구되었음.

References

  1. A. H. Abdelrahman, F. Yang, A. Z. Elsherbeni, P. Nayeri, and C. A. Balanis, Analysis and design of transmitarray antennas, Springer, 2017.
  2. H. Shi, J. Li, A. Zhang, Y. Jiang, J. Wang, Z. Xu, and S. Xia, "Gradient metasurface with both polarization -controlled directional surface wave coupling and anomalous reflection," IEEE Antennas and Wireless Propagation Letters, Vol. 14, pp. 104-107, 2014.
  3. S. Chaimool and Y. Zhao, "Applications of gradient metasurfaces: A review," ECTIE-Mag, Vol. 11, pp. 3-13, 2017.
  4. N. Yu, P. Genevet, M. A. Kats, F. Aieta, J.-P. Tetienne, F. Capasso, and Z. Gaburro, "Light propagation with phase discontinuities: generalized laws of reflection and refraction," science, Vol. 334, No. 6054, pp. 333-337, 2011.
  5. R. Y. Wu, Y. B. Li, W. Wu, C. B. Shi, and T. J. Cui, "High-gain dual-band trans-mitarray," IEEE Transactions on antennas and Propagation, Vol. 65, No. 7, pp. 3481-3488, 2017.
  6. B. A. Munk, Frequency selective surfaces: theory and design, John Wiley & Sons, 2005.
  7. D. Ferreira, R. F. Caldeirinha, I. Cuinas, and T. R. Fernandes, "Square loop and slot frequency selective surfaces study for equivalent circuit model optimization," IEEE Transactions on Antennas and Propagation, Vol. 63, No. 9, pp. 3947-3955, 2015.
  8. Y. Chen, L. Chen, H. Wang, X.-T. Gu, and X.-W. Shi, "Dual-band crossed-dipole reflectarray with dual-band frequency selective surface," IEEE Antennas and Wireless Propagation Letters, Vol. 12, pp. 1157-1160, 2013.
  9. M. Chaharmir, A. Ittipiboon, and J. Shaker, "Single-band and dual-band multilayer transmitarray antennas," International Symposium on Antenna Technology and Applied Electromagnetics and Canadian Radio Sciences Conference. IEEE, pp. 1-4, 2006.
  10. Aieta, Francesco, et al., "Aberration-free ultrathin flat lenses and axicons at telecom wavelengths based on plasmonic metasurfaces," Nano letters, 12.9, pp. 4932-4937, 2012.