• Title/Summary/Keyword: Hyperaccumulation

Search Result 7, Processing Time 0.021 seconds

Antifibrotic Effects of Oriental Herbs Extraction on Liver Cirrhosis (한약재(자하거, 백출, 차전자) 추출물의 간경화 억제효능에 관한 연구)

  • Yu, Byung-Soo;Lee, Jong-Hyung;Cho, Syung-Eun;Baek, Seung-Hwa
    • YAKHAK HOEJI
    • /
    • v.51 no.1
    • /
    • pp.7-12
    • /
    • 2007
  • Hepatic cirrhosis is an important feature of chronic liver disease. Liver cirrhosis is characterized by hyperaccumulation of fibrous tissue components and is commonly observed in latter or terminal states of chronic hepatic disease. The antifibrotic effects on liver cirrhosis by oriental herbs extraction material were examined in bile duct ligated rats. Oriental herbs extraction (0.99 mg/kg rat weight/day) was administrated to cirrohotic rats for 4 weeks. Liver collagen content of bile duct ligated rats was significantly increased. And liver histology showed collagen fiber deposition was increased as well as the normal architecture was lost with large zone of necrosis being observed. Herbs extraction administrated rats showed significantly decreased liver collagen content, accumulation of collagen fiber in histological analysis, and biochemical markers of hepatic diseases. Those results demonstrate the usefulness of herbs extraction materials as an antifibrotic agent for liver cirrhosis.

Antifibrotic effects of oriental herbs GLM001 on liver cirrhosis induced by bile duct ligation

  • Jeong, Bong-Ho;Kim, Hee-Seok;Kim, Chul;Kim, Jae-Sung;Bae, Heung-Mo;Kwon, In-Sook;Lee, Cheol-Han;JeKal, Seung-Ju;Yu, Byung-Su
    • Advances in Traditional Medicine
    • /
    • v.2 no.2
    • /
    • pp.94-100
    • /
    • 2002
  • Liver cirrhosis is characterized by hyperaccumulation of fibrous tissue components and is commonly observed in latter or terminal states of chronic hepatic diseases. In this study, the antifibrotic effects of GLM001 on liver cirrhosis were examined in bile duct ligated rats and patients with hepatic diseases. GLM001 (250 mg/kg rat weight/ day) was administrated to cirrhotic rats for 4 weeks and to humans for 14 weeks. Bile duct ligated rats significantly increased liver collagen content and biochemical markers of hepatic injury. Liver histology showed collagen fiber deposition was increased and the normal architecture was lost with large zones of necrosis being observed frequently. GLM001 administrated rats showed significantly decreased liver collagen content, and accumulation of collagen fiber in histological analysis. Patients, who were treated with GLM001, showed decreases in biochemical markers of hepatic diseases. These results demonstrate the usefulness of GLM001 as an antifibrotic agent for liver cirrhosis.

Organic amendment-driven removal and speciation of metals using wormwood in two contrasting soils near an abandoned copper mine

  • Ro, Hee-Myong;Choi, Hyo-Jung;Yun, Seok-In;Park, Ji-Suk
    • Horticulture, Environment, and Biotechnology : HEB
    • /
    • v.59 no.6
    • /
    • pp.775-786
    • /
    • 2018
  • To test the hypothesis that humic acid (HA), anaerobically digested pig slurry filtrate (APS), and their combination would differently affect the chemical speciation and extractability of metals (cadmium, copper, and zinc) and their uptake by plants, we conducted a pot experiment using wormwood in two texturally contrasting soils (sandy loam and clay loam) collected from a field near an abandoned Cu mine. Four treatments were laid out: HA at $ 23.5g\;kg^{-1}$ (HA), APS at $330mL\;kg^{-1}$ (APS), HA at $ 23.5g\;kg^{-1}$ and APS at $330mL\;kg^{-1}$ (HA + APS), and a control. Each treatment affected the chemical speciation and mobility of the metals, and thereby resulting in variable patterns of plant biomass yield and metal uptake. The APS supported plant growth by increasing nutrient availability. HA supported or hindered plant growth by impacting the soil's water and nutrient retention capacity and aeration, in a soil texture-dependent manner, while consistently enhancing the immobilization of heavy metals. Temporal increases in whole-plant dry matter yield and metal accumulation suggested that the plants were capable of metal hyperaccumulation. The results were discussed in terms of the mobility of metals and plant growth and corroborated by the $^{15}N$ recovery of soil- and plant-N pools under H and HS treatments. Therefore, for effective phytoremediation of polluted soils, an appropriate combination of plant growth promoters (APS) and chelating agents (HA) should be predetermined at the site where chemical stabilization of pollutants is desired.

Hyperaccumulation mechanism in plants and the effects of roots on rhizosphere soil chemistry - A critical review (고축적식물의 중금속 흡수기작과 뿌리에 의한 근권 토양의 화학변화 - 총설)

  • Kim, Kwon-Rae;Owens, Gary;Naidu, Ravi;Kim, Kye-Hoon
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.40 no.4
    • /
    • pp.280-291
    • /
    • 2007
  • Much research has been conducted in the field of phytoremediation since the discovery of the range of plants known as hyperaccumulators. Research has focused simultaneously on elucidating the mechanism of metal(loid) accumulation and development of practical techniques to enhance accumulation efficiency. To date, it is generally understood that there are five specific mechanisms employed by hyperaccumulating plant species that are either not or under utilized by non-hyperaccumulators. These include 1) enhanced metal(loid)s uptake through the root cell, 2) enhanced translocation in plant tissue, 3) detoxification and sequestration, 4) enhanced metal availability in soil:root interface, and 5) active root foraging toward metal(loid) enriched soils. Among these mechanisms, understanding of the plant-root effect on metal(loid) dynamics and subsequent plant uptake is vital to overcome the inherit limitation of phytoremediation caused by low metal(loid) solubility in soils. Plant roots can influence the soil chemistry in the rhizosphere through changes in pH and exudation of organic compounds such as low-molecular-weight organic acids (LMWOAs) which consequently change metal(loid) solubility. The decrease in soil pH by plant release of $H^+$ results in increased metal solubility. Elevated levels of organic compounds in response to high metal soil concentrations by plant exudation may also increases metal concentration in soil solution through formation of organometallic complexes.

Arsenic Concentrations of Groundwater and Rice Grains in Bangladesh and Phytoremediation (방글라데시의 지하수와 쌀의 비소오염 및 식물정화법)

  • Islam, Jahidul Mohammad;Kim, Bomchul;Laiju, Nahida;Nasirullah, Tarek;Miah, Mohammad Nuruddin
    • Journal of Korean Society on Water Environment
    • /
    • v.26 no.1
    • /
    • pp.116-124
    • /
    • 2010
  • While groundwater is the major source for drinking and irrigation purposes, arsenic (As) contamination of groundwater is a serious issue in Bangladesh. With a view to reduce As contamination in drinking water the guideline value recommended for Bangladesh is 0.05 mg/L. We assessed groundwater As in an As-affected Sadar Upazilla (small administrative unit) in the District (administrative unit) of Chapai Nabwabganj during 2006, where 50% hand tube well water were above the recommended limit (0.05 mg/L) during dry season. Almost 20% tube well waters were above the recommended limit during rainy season, perhaps due to the dilution of water table. The groundwater in Bangladesh contaminates surface soils and plants thereby As entering the food chain. In 2005, we examined the As levels in different rice varieties grown in different Districts of Bangladesh and the As concentrations in rice grain ranged from 0.07~1.12 mg/kg while the concentrations in 3 rice varieties were above the recommended limit (1 mg/kg rice grain) and the maximum concentration was 1.12 mg/kg rice grain in the rice variety BR 11. With few exceptions, the As content of rice grain in Bangladesh is not considered to be concentration of greater health concern as yet. We also observed enhanced root uptake, efficient root-to shoot translocation, and a much elevated tolerance through internal detoxification all contribute to As hyperaccumulation in a plant, ladder brake fern (Pteris vittata L.). But the phytoremediation technique might not be an appropriate tool to reduce the As calamity in the vast areas of Bangladesh. To mitigate the As problem of Bangladesh, better coordination among governmental agencies and many other organizations will be required to combat the disaster.

Heavy metal concentration of plants in Baekdong serpentine area, western part of chungnam (충남 서부 백동 사문암지역 식물체의 중금속 함량)

  • 송석환;김명희;민일식;장인수
    • Journal of Korea Soil Environment Society
    • /
    • v.4 no.2
    • /
    • pp.113-125
    • /
    • 1999
  • Heavy metal elements were analysed to assess degrees of heavy metal contents for the plants, M. sinensis, A. vulgaris and G. oldhamiana, from the Baekdong serpentine area within the western part of Chungnam. The area was divided into two sites ; serpentine area (SP, consisting of serpentinite, SP) and non-serpentine area (NSP, containing amphibole schist, AS and gneiss, GN). Their host rocks(R) and top soils(S) were also collected from the each site. As the results of the study, the plants contain high concentration of Ni Cr, Co in the SP and Fe, Zn in the AS and GN. Plants from the AS of the NSP contain mainly high content in the most of elements. Averages of Ni, Co and Cr for the plants decreased in the order of SP, AS and GN. In the total element contents, M. sinensis and A. vulgaris decreased in the order of Fe > Ni or Cr > Zn > Co > As > Sc within the SP and in the order of Fe > Zn > Cr > Ni, within the GN. Comparing among the parts of plants, root parts were higher in the most of elements than the above grounds. In the relative element ratios of plants collected from the SP and GN (SP/GN) M. sinensis was lower than A. vulgaris in the most of elements, suggesting that the M. sinenis shows low absorption within the infertile serpentine soil and high absorption within the fertile gneiss soil. In the element contents of the top soils and their host rocks, the SP shows higher Ni, Co and Cr contents than the others. Their total contents decreased from SP to AS and GN, suggesting that the soils reflect the composition of their host rocks. Total element contents of the SP decreased in the order of Fe> Cr or Ni> Co> Zn> As> Sc and, for the GN, in the order of Fe> Zn> Cr> Ni> Co or Sc, respectively. In the relative element ratios, R/S of the SP decreased in the order of Cr> As> Fe> Sc> Co> Ni> Zn and for the GN, in the order of Sc> Fe> Ni> Zn> Cr> Co. Comparing with plants within the each site, their top soils were higher than the plants in the most of elements. and their increase and decrease trends for each element are similar. Differences of element contents between the top soils and plants decreased in the order of SP, AS and GN. Plants of the GN were moi-e similar to their soils than those of the others, suggesting that each plant species show different absorptions within the different soils. Comparing with the plants of GN, higher Ni, Co, Cr contents within those of the SP and their survival within the infertile serpentine soil suggest that the M. sinensis, A vulgaris and G. oldhamiana may be the tolerance species in the serpentine soil. Comparisons with the upper crust show that M. sinensis, and A. vulgaris within the SP show high Hi and Cr contents. suggestive of hyperaccumulation. Upper results with the previous studies for the contaminated soils developed as parent materials with the serpentinites suggest additional studies for ecological behaviors for the plant and degrees of accumulations for the elements need to know phytoextraction of the heavy metal elements within the soils.

  • PDF