• Title/Summary/Keyword: Hyper-Spectral Image

Search Result 17, Processing Time 0.03 seconds

Real Time Relative Radiometric Calibration Processing of Short Wave Infra-Red Sensor for Hyper Spectral Imager

  • Yang, Jeong-Gyu;Park, Hee-Duk
    • Journal of the Korea Society of Computer and Information
    • /
    • v.21 no.11
    • /
    • pp.1-7
    • /
    • 2016
  • In this paper, we proposed real-time relative radiometric calibration processing method for SWIR(Short Wavelength Infra-Red) sensor using 'Hyper-Spectral Imager'. Until now domestic research for Hyper-Spectral Imager has been performing with foreign sensor device. So we have been studying hyper spectral sensor device to meet domestic requirement, especially military purpose. To improve detection & identify capability in 'Hyper-Spectral Imager', it is necessary to expend sensing wavelength from visual and NIR(Near Infra-Red) to SWIR. We aimed to design real-time processor for SWIR sensor which can control the sensor ROIC(Read-Out IC) and process calibrate the image. To build Hyper-Spectral sensor device, we will review the SWIR sensor and its signal processing board. And we will analyze relative radiometric calibration processing method and result. We will explain several SWIR sensors, our target sensor and its control method, steps for acquisition of reference images and processing result.

Management Software Development of Hyper Spectral Image Data for Deep Learning Training (딥러닝 학습을 위한 초분광 영상 데이터 관리 소프트웨어 개발)

  • Lee, Da-Been;Kim, Hong-Rak;Park, Jin-Ho;Hwang, Seon-Jeong;Shin, Jeong-Seop
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.21 no.6
    • /
    • pp.111-116
    • /
    • 2021
  • The hyper-spectral image is data obtained by dividing the electromagnetic wave band in the infrared region into hundreds of wavelengths. It is used to find or classify objects in various fields. Recently, deep learning classification method has been attracting attention. In order to use hyper-spectral image data as deep learning training data, a processing technique is required compared to conventional visible light image data. To solve this problem, we developed a software that selects specific wavelength images from the hyper-spectral data cube and performs the ground truth task. We also developed software to manage data including environmental information. This paper describes the configuration and function of the software.

A CLASSIFICATION METHOD BASED ON MIXED PIXEL ANALYSIS FOR CHANGE DETECTION

  • Jeong, Jong-Hyeok;Takeshi, Miyata;Takagi, Masataka
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.820-824
    • /
    • 2003
  • One of the most important research areas on remote sensing is spectral unmixing of hyper-spectral data. For spectral unmixing of hyper spectral data, accurate land cover information is necessary. But obtaining accurate land cover information is difficult process. Obtaining land cover information from high-resolution data may be a useful solution. In this study spectral signature of endmembers on ASTER acquired in October was calculated from land cover information on IKONOS acquired in September. Then the spectral signature of endmembers applied to ASTER images acquired on January and March. Then the result of spectral unmxing of them evauateted. The spectral signatures of endmembers could be applied to different seasonal images. When it applied to an ASTER image which have similar zenith angle to the image of the spectral signatures of endmembers, spectral unmixing result was reliable. Although test data has different zenith angle from the image of spectral signatures of endmembers, the spectral unmixing results of urban and vegetation were reliable.

  • PDF

Band Selection Algorithm based on Expected Value for Pixel Classification (픽셀 분류를 위한 기댓값 기반 밴드 선택 알고리즘)

  • Chang, Duhyeuk;Jung, Byeonghyeon;Heo, Junyoung
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.22 no.6
    • /
    • pp.107-112
    • /
    • 2022
  • In an embedded system such as a drone, it is difficult to store, transfer and analyze the entire hyper-spectral image to a server in real time because it takes a lot of power and time. Therefore, the hyper-spectral image data is transmitted to the server through dimension reduction or compression pre-processing. Feature selection method are used to send only the bands for analysis purpose, and these algorithms usually take a lot of processing time depending on the size of the image, even though the efficiency is high. In this paper, by improving the temporal disadvantage of the band selection algorithm, the time taken 24 hours was reduced to around 60-180 seconds based on the 40000*682 image resolution of 8GB data, and the use of 7.6GB RAM was significantly reduced to 2.3GB using 45 out of 150 bands. However, in terms of pixel classification performance, more than 98% of analysis results were derived similarly to the previous one.

Support Vector Machine and Spectral Angle Mapper Classifications of High Resolution Hyper Spectral Aerial Image

  • Enkhbaatar, Lkhagva;Jayakumar, S.;Heo, Joon
    • Korean Journal of Remote Sensing
    • /
    • v.25 no.3
    • /
    • pp.233-242
    • /
    • 2009
  • This paper presents two different types of supervised classifiers such as support vector machine (SVM) and spectral angle mapper (SAM). The Compact Airborne Spectrographic Imager (CASI) high resolution aerial image was classified with the above two classifier. The image was classified into eight land use /land cover classes. Accuracy assessment and Kappa statistics were estimated for SVM and SAM separately. The overall classification accuracy and Kappa statistics value of the SAM were 69.0% and 0.62 respectively, which were higher than those of SVM (62.5%, 0.54).

Searching Spectrum Band of Crop Area Based on Deep Learning Using Hyper-spectral Image (초분광 영상을 이용한 딥러닝 기반의 작물 영역 스펙트럼 밴드 탐색)

  • Gwanghyeong Lee;Hyunjung Myung;Deepak Ghimire;Donghoon Kim;Sewoon Cho;Sunghwan Jeong;Bvouneiun Kim
    • Smart Media Journal
    • /
    • v.13 no.8
    • /
    • pp.39-48
    • /
    • 2024
  • Recently, various studies have emerged that utilize hyperspectral imaging for crop growth analysis and early disease diagnosis. However, the challenge of using numerous spectral bands or finding the optimal bands for crop area remains a difficult problem. In this paper, we propose a method of searching the optimized spectral band of crop area based on deep learning using the hyper-spectral image. The proposed method extracts RGB images within hyperspectral images to segment background and foreground area through a Vision Transformer-based Seformer. The segmented results project onto each band of gray-scale converted hyperspectral images. It determines the optimized spectral band of the crop area through the pixel comparison of the projected foreground and background area. The proposed method achieved foreground and background segmentation performance with an average accuracy of 98.47% and a mIoU of 96.48%. In addition, it was confirmed that the proposed method converges to the NIR regions closely related to the crop area compared to the mRMR method.

Development of High Speed Satellite Data Acquisition System

  • Choi, Wook-Hyun;Park, Sang-Jin;Seo, In-Seok;Park, Won-Kyu
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.280-282
    • /
    • 2003
  • The downlink data rates of the space-born payloads such as high-resolution optical cameras, synthetic aperture radars (SAR) and hyper-spectral sensors are being rapidly increased. For example, the image transmission rates of KOMPSAT-2 MSC(Multi-Spectral Camera) is 320Mbps even if on-board image compression scheme is used.[1] In the near future, the data rates are expected to be a level 500${\sim}$600Mbps because the required resolution will be higher and the swath width will be increased. This paper describes many techniques they enable 500Mbps data receiving and archiving system.

  • PDF

A Mechanism Study of a HyperSpectral Image Sensor for Nadir and Slant Range Operation (직하방과 빗각 촬영 운용을 위한 초분광 영상센서 구동방식에 관한 연구)

  • Lee, Kyeongyeon
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.22 no.4
    • /
    • pp.484-491
    • /
    • 2019
  • General Hyperspectral Image Sensor acquires an image of line form such as a thin rectangle shape because of using 1D array Push Broom or Whisk Broom scanning method. A special mechanism is required for a Hyperspectral Image Sensor to operate for nadir and slant range. To design the mechanism, the characteristics of the flight motion and the overlap rate between consecutive frames were analyzed. Also, system requirements were proposed through modeling and simulation.

Registration of Aerial Image with Lines using RANSAC Algorithm

  • Ahn, Y.;Shin, S.;Schenk, T.;Cho, W.
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.25 no.6_1
    • /
    • pp.529-536
    • /
    • 2007
  • Registration between image and object space is a fundamental step in photogrammetry and computer vision. Along with rapid development of sensors - multi/hyper spectral sensor, laser scanning sensor, radar sensor etc., the needs for registration between different sensors are ever increasing. There are two important considerations on different sensor registration. They are sensor invariant feature extraction and correspondence between them. Since point to point correspondence does not exist in image and laser scanning data, it is necessary to have higher entities for extraction and correspondence. This leads to modify first, existing mathematical and geometrical model which was suitable for point measurement to line measurements, second, matching scheme. In this research, linear feature is selected for sensor invariant features and matching entity. Linear features are incorporated into mathematical equation in the form of extended collinearity equation for registration problem known as photo resection which calculates exterior orientation parameters. The other emphasis is on the scheme of finding matched entities in the aide of RANSAC (RANdom SAmple Consensus) in the absence of correspondences. To relieve computational load which is a common problem in sampling theorem, deterministic sampling technique and selecting 4 line features from 4 sectors are applied.

Comparison of Remote Sensing and Crop Growth Models for Estimating Within-Field LAI Variability

  • Hong, Suk-Young;Sudduth, Kenneth-A.;Kitchen, Newell-R.;Fraisse, Clyde-W.;Palm, Harlan-L.;Wiebold, William-J.
    • Korean Journal of Remote Sensing
    • /
    • v.20 no.3
    • /
    • pp.175-188
    • /
    • 2004
  • The objectives of this study were to estimate leaf area index (LAI) as a function of image-derived vegetation indices, and to compare measured and estimated LAI to the results of crop model simulation. Soil moisture, crop phenology, and LAI data were obtained several times during the 2001 growing season at monitoring sites established in two central Missouri experimental fields, one planted to com (Zea mays L.) and the other planted to soybean (Glycine max L.). Hyper- and multi-spectral images at varying spatial. and spectral resolutions were acquired from both airborne and satellite platforms, and data were extracted to calculate standard vegetative indices (normalized difference vegetative index, NDVI; ratio vegetative index, RVI; and soil-adjusted vegetative index, SAVI). When comparing these three indices, regressions for measured LAI were of similar quality $(r^2$ =0.59 to 0.61 for com; $r^2$ =0.66 to 0.68 for soybean) in this single-year dataset. CERES(Crop Environment Resource Synthesis)-Maize and CROPGRO-Soybean models were calibrated to measured soil moisture and yield data and used to simulate LAI over the growing season. The CERES-Maize model over-predicted LAI at all corn monitoring sites. Simulated LAI from CROPGRO-Soybean was similar to observed and image-estimated LA! for most soybean monitoring sites. These results suggest crop growth model predictions might be improved by incorporating image-estimated LAI. Greater improvements might be expected with com than with soybean.