DOI QR코드

DOI QR Code

Comparison of Remote Sensing and Crop Growth Models for Estimating Within-Field LAI Variability

  • Hong, Suk-Young (National Institute of Agricultural Science and Technology, Rural Development Administration) ;
  • Sudduth, Kenneth-A. (Cropping Systems and Water Quality Research Unit, USDA-ARS) ;
  • Kitchen, Newell-R. (Cropping Systems and Water Quality Research Unit, USDA-ARS) ;
  • Fraisse, Clyde-W. (Agricultural and Biological Engineering Department, University of Florida) ;
  • Palm, Harlan-L. (Agronomy Department, University of Missouri) ;
  • Wiebold, William-J. (Agronomy Department, University of Missouri)
  • Published : 2004.06.01

Abstract

The objectives of this study were to estimate leaf area index (LAI) as a function of image-derived vegetation indices, and to compare measured and estimated LAI to the results of crop model simulation. Soil moisture, crop phenology, and LAI data were obtained several times during the 2001 growing season at monitoring sites established in two central Missouri experimental fields, one planted to com (Zea mays L.) and the other planted to soybean (Glycine max L.). Hyper- and multi-spectral images at varying spatial. and spectral resolutions were acquired from both airborne and satellite platforms, and data were extracted to calculate standard vegetative indices (normalized difference vegetative index, NDVI; ratio vegetative index, RVI; and soil-adjusted vegetative index, SAVI). When comparing these three indices, regressions for measured LAI were of similar quality $(r^2$ =0.59 to 0.61 for com; $r^2$ =0.66 to 0.68 for soybean) in this single-year dataset. CERES(Crop Environment Resource Synthesis)-Maize and CROPGRO-Soybean models were calibrated to measured soil moisture and yield data and used to simulate LAI over the growing season. The CERES-Maize model over-predicted LAI at all corn monitoring sites. Simulated LAI from CROPGRO-Soybean was similar to observed and image-estimated LA! for most soybean monitoring sites. These results suggest crop growth model predictions might be improved by incorporating image-estimated LAI. Greater improvements might be expected with com than with soybean.

Keywords

References

  1. Baret, F. and G. Guyot, 1991. Potentials and limits of vegetation indices for LAI and APAR assessment, Remote Sens., Environ., 35:161-173
  2. Bames,E. M., P. J. Pinter Jr, B. A. Kimball, and G. W.Wall, 1997. Modification of CERES-Wheat to accept leaf area index as an input variable,ASAE, St.Joseph, MI. Paper No.973016
  3. Basso, B., J. T. Ritchie, F. J. Pierce, R. P. Braga, and J.W. Jones, 2001. Spatial validation of crop models for precision agriculture, Agr. Systems,68: 97-112
  4. Colvin, T. S., D. B. Jaynes, D. L. Karlen, D. A. Laird,and J. R. Ambuel, 1997. Yield variability within a central Iowafield, Trans. ASAE, 40: 883-889 https://doi.org/10.13031/2013.21336
  5. Donatelli, M., M. Acutis, and N. Laruccia, 1996.Evaluation of methods to estimate soil water content at field capacity and wilting point, Proc.European Soc. Agronomy Congress, Veldhoven,The Netherlands, pp.86-87,
  6. Doolittle, J. A., K. A. Sudduth, N. R. Kitchen, and S. J.Indorante, 1994. Estimating depths to claypans using electromagnetic induction methods, J.Soil and Water Cons., 49(6): 572-575
  7. Fraisse, C. w., K. A. Sudduth, and N. R. Kitchen, 2001.Calibration of the CERES-Maize model for simulating site-specific crop development and yield on claypan soils, Appl. Eng. Agric., 17(4):547-556
  8. Green, A. A., M. Berman, P. Switzer, and M. D. Craig,1988. A transformation for ordering multispectral data in terms of image quality with implications for noise removal, IEEE Trans. on Geoscience and Remote Sensing, 26(1):65-74
  9. Hatfield, J. L., C. D. Stanley, and R. E. Carlson, 1976. Evaluation of an electronic foliometer to measure leaf area in corn and soybean, Agron J.,68:434-436
  10. Hong, S. Y., J. T. Lee, S. K. Rim, and J.S. Shin, 1997. Radiometric estimates of grain yields related to crop above-ground net production (ANP) in paddy rice, Proc. IGARSS' 1997, Singapore, pp.1793-1795
  11. Hong, S. Y., K. A. Sudduth, N. R. Kitchen, H. L. Palm, and W. J. Wiebold, 2001. Using hyperspectral remote sensing data to quantify within-field spatial variability, Proc. 3rd Inti. Conf. on Geospatial Information in Agriculture and Forestry, Denver, CO.,CD-ROM
  12. Hoogenboom, G., J. W. Jones, P. W. Wilkens, W. D. Batchelor, W. T. Bowen, L. A. Hunt, N. Pickering, U. Singh, D. C. Godwin, B. Baer,K.J. Boote, J. T. Ritchie, and J.W. White, 1994. Crop models, In: G. Y. Tsuji, G. Uehara, and S.Salas eds.), DSSAT v3, 2(2). University of Hawaii, Honolulu, Hawaii
  13. Huete, A. R., 1988. A soil-adjusted vegetation index(SAVI), Remote Sens. Environ., 25: 295-309
  14. Inoue, Y., 2001. Estimating eco-physiological crop variables based on remote sensing signatures and modeling, Proc. NIAES-STA International Workshop 2001; Crop Monitoring and Prediction at Regional Scales, Tsukuba, Japan
  15. Jones, C. A. and J. R. Kiniry, 1986. CERES-Maize: A Simulation Model of Maize Growth and Development, Texas A&M University Press, ollege Station, TX.,pp.103-125
  16. Jordan, C. F., 1969. Derivation of leaf area index from quality of light on the forest floor, Ecology, 50:663-666
  17. Kitchen, N. R., K. A. Sudduth, and S. T. Drummond,1999. Soil electrical conductivity as a crop productivity measure for claypan soils, J. Prod. Agric., 12(4): 607-617
  18. Maas, S. J., 1988. Using satellite data to improve model estimates of crop yield, Agron. J., 80(4): 655-662
  19. Mao,C., 2000. Hyperspectral focalplane scanning - An innovative approach to airborne and laboratory pushbroom hyperspectral imaging, Proc. of 2nd Intl. Conf. on Geospatial Information in Agriculture and Forestry, Lake Buena Vista, FL.,pp.I-424-428
  20. Matthews, R. B. and S. Blackmore, 1997. Using crop simulation models to determine optimum management practices in precision agriculture, Proc. First European Conf. on Precision Agriculture. Bios Scientific Publishers, Oxford, UK.,pp.413-420
  21. Moulin, S., A. Bondeau, and R. Delecolle, 1998. Combining agricultural crop models and satellite observations: from field to regional scales, Int. J. Remote Sensing, 19(6): 1021-1036 https://doi.org/10.1080/014311698215586
  22. Rouse, J. W., R. H. Haas, J. A. Schell, and D. W. Deering, 1973. Monitoring vegetation systems in the great plains with ETRA, Third ETRS Symposium, NASA SP-353, U.S. Govt. Printing Office, Washington D.C., 1: 309-317
  23. Seidl, M.S., W. D. Batchelor, and J. O. Paz, 2002. Integrating remote images with crop models to improve spatial yield prediction for soybeans, Trans. ASAE
  24. Sudduth, K. A., S. T. Drummond, S. J.Birrell, and N. R. Kitchen, 1996. Analysis of spatial factors influencing crop yield, Proc. 3rd IntI. Conf. on Precision Agriculture, Madison, WI., American Society of Agronomy, LC. 129-140
  25. Sudduth, K. A., C. W. Fraisse, S. T. Drummond, and N.R. Kitchen, 1998. Integrating spatial data collection, modeling and analysis for precision agriculture, Proc. First Inti. Conf. on Geospatial Information in Agriculture and Forestry, Ann Arbor, MI.,ERIM International, LC. 166-173
  26. Thenkabail, P. S., R. B. Smith, and E. D. Pauw, 2000. Hyperspectral vegetation indices and their relationships with agricultural crop characteristics, Remote Sens. Environ., 71: 158-182
  27. Thomasson, J. A.,R. Sui, M. S. Cox, and A. Al-Rajehy,2001. Soil reflectance sensing for determining soil properties in precision agriculture, Trans. ASAE,44(6): 1445-1453
  28. Wang, F., C. W. Fraisse, N. R. Kitchen, and K. A.Sudduth, 2002. Site-specific evaluation of the CROPGRO-Soybean model on Missouri claypan soils, Agricultural Systems
  29. Watson, D. J., 1947. Comparative physiological studies on the growth of field crops: I. Variation in net assimilation rate and leaf area between species and varieties, and with and between years, Ann. Bot. (N.S.), 11: 41-76
  30. Wiegand, C. L., A. J. Richardson, R. D. Jackson, P. J.Pinter, Jr., J. K. Aase, D. E. Smika, L. F.Lautenschlager, and J.E.McMurtrey, III, 1986. Development of agrometeorological crop model inputs from remotely sensed information., IEEE Trans. Geoscience and Remote Sensing, 24(1):90-97
  31. Wiegand, C.L., A. J.Richardson, D.E. Escobar, and A.H. Gerbermann, 1991. Vegetation indices in crop assessment, Remote Sens. Environ., 35:105-119
  32. Wood, G. A., J. C. Taylor, and R. J. Godwin, 2003. Calibration methodology for mapping withinfield crop variability using remote sensing, Biosystems Engineering, 84(4): 409-423