• Title/Summary/Keyword: Hydrothermal conditions

Search Result 291, Processing Time 0.028 seconds

Characterization of Hydrothermally Synthesized $BaTiO_3$ Powder and Spark Plasma Sintering(SPS) (수열합성 법에 의한 $BaTiO_3$ 분말제조 및 방전 플라즈마 소결)

  • 이정수;이완재
    • Journal of Powder Materials
    • /
    • v.8 no.1
    • /
    • pp.35-41
    • /
    • 2001
  • $BaTiO_3$ fine powder was synthesized by hydrothermal process from the mixture of titania-hydroxide($TiO_2{\cdot}xH_2O$) and barium hexa-hydroxide ($Ba(OH)_2{\cdot}8H_2O$) as starting materials. Fine powder(< 100 nm) was made under the reaction conditions of 18$0^{\circ}C$,10 atm, 1.5 hr in autoclave and showed cubic structure. The powders were sintered by a spark plasma sintering technique from 1050~115$0^{\circ}C$ for 5 min. The grains of sample sintered at 110$0^{\circ}C$ were about 0.9${\mu}m$ in average size and showed the mixture of cubic and tetragonal structures.

  • PDF

Synthesis of Zeolite From Fly Ash (석탄회를 이용한 제올라이트의 열수합성)

  • 진지영
    • Economic and Environmental Geology
    • /
    • v.32 no.6
    • /
    • pp.575-584
    • /
    • 1999
  • Through alkaline hydrothermal activation processes, zeolite minerals were synthesized from fly ashes produced at Youngwol and Boryoung power plants. The syntheses were performed in a closed teflon vessel with a teflon-coated magnetic bar for continuous stirring during the reaction periods. The experiments were caeeied out at three different reaction temperatures ($100^{\circ}C$,$200^{\circ}C$, and $250^{\circ}C$), with varying NaOH concentations (0.5~8N) and reaction time (24 to 288 hours). Mineralogical characterization of the reaction products indicated that Na-p1, analcime, and hydroxysodalite were dominant zeolites formed from the both fly ashes at the given experimental conditions, The highest amount of zoelites produced from the Youngwol and Boryoung fly ash were:60 and 45wt%for Na-P1, 70 and 45wt% for analicime, 50 and 40wt% for hydroxysodalite, respectively. A small amount of zeolite A was present in NaP-dominant dample is about 250 meq/100g. This suggests the possibility of its utilization as an ion-absorbent.

  • PDF

Separation of $CO_2$ and $N_2$ with a NaY Zeolite Membrane under Various Permeation Test Conditions

  • Cho, Churl-Hee;Yeo, Jeong-Gu;Ahn, Young-Soo;Han, Moon-Hee;Hyun, Sang-Hoon
    • Korean Membrane Journal
    • /
    • v.8 no.1
    • /
    • pp.21-30
    • /
    • 2006
  • A faujasite NaY zeolite membrane was prepared on a tubular ${\alpha}-Al_2O_3$ support by the secondary growth process, and effects of permeation test conditions on the $CO_2/N_2$ separation were investigated. A NaY zeolite membrane with good $CO_2/N_2$ separation was successfully synthesized by using the hydrothermal solution ($Al_2O_3:SiO_2:Na_2O:H_2O$ = 1:6:14:840 in a molar base): at a permeation temperature of $30^{\circ}C$, its $CO_2$ permeance and $CO_2/N_2$ separation factor were $2.5{\times}10^{-7}mol/m^2secPa$ and 34, respectively. The $CO_2$ and $N_2$ permeations were highly dependent on permeation test conditions (feed composition, feeding rate, feed pressure, He sweeping rate and permeation temperature). The results indicated that (i) $CO_2$ and $N_2$ permeations through NaY zeolite membrane are governed by surface and micropore diffusions, respectively, (ii) the preparation of NaY zeolite membrane with a large permeating area is one of the most difficult hurdles for its real applications, and (iii) the retardation of $N_2$ permeation is an effective key to improve $CO_2/N_2$ separation factor in NaY zeolite membrane.

Review and Strategy for Study on Korean Buffer Characteristics Under the Elevated Temperature Conditions: Mineral Transformation and Radionuclide Retardation Perspective

  • Park, Tae-Jin;Yoon, Seok;Lee, Changsoo;Cho, Dong Keun
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.19 no.4
    • /
    • pp.459-467
    • /
    • 2021
  • In the majority of countries, the upper limit of buffer temperature in a repository is set to below 100℃ due to the possible illitization. This smectite-to-illite transformation is expected to be detrimental to the swelling functions of the buffer. However, if the upper limit is increased while preventing illitization, the disposal density and cost-effectiveness for the repository will dramatically increase. Thus, understanding the characteristics and creating a database related to the buffer under the elevated temperature conditions is crucial. In this study, a strategy to investigate the bentonite found in Korea under the elevated temperatures from a mineral transformation and radionuclides retardation perspective was proposed. Certain long-term hydrothermal reactions generated the bentonite samples that were utilized for the investigation of their mineral transformation and radionuclide retardation characteristics. The bentonite samples are expected to be studied using in-situ synchrotron-based X-Ray Diffraction (XRD) technique to determine the smectite-to-illite transformation. Simultaneously, the 'high-temperature and high-pressure mineral alteration measurement system' based on the Diamond Anvil Cell (DAC) will control and provide the elevated temperature and pressure conditions during the measurements. The kinetic models, including the Huang and Cuadros model, are expected to predict the time and manner in which the illitization will become detrimental to the performance and safety of the repository. The sorption reactions planned for the bentonite samples to evaluate the effects on retardation will provide the information required to expand the current knowledge of repository optimization.

Characterization of the Kaolinite Synthesized According to the pH. (pH에 따른 캐올리나이트 합성과 특성 분석)

  • Ryu, Gyoung-Won;Jang, Young-Nam;Bae, In-Kook;Suh, Yong-Jae
    • Economic and Environmental Geology
    • /
    • v.41 no.2
    • /
    • pp.165-172
    • /
    • 2008
  • Kaolinite [$Al_2Si_2O_5(OH)_4$] used in these experiments was synthesized at 250$^{\circ}C$ for 36 hrs by a hydrothermal process from amorphous $Al(OH)_3$ and $SiO_2$. The change of the mineralogical properties of the phase synthesized were observed in the pH range 2 to 9. The synthetic kaolinite were characterized by the analytical methods of XRD, IR, DIA, and FE-SEM. Kaolinite was obtained in a wide range of pH. The phases with high- to midium- defect kaolinite with high thermal stability were obtained from the acidic conditions and high-defect kaolinite with low thermal stability from the basic conditions. These variations of kaolinite properties appears to be related to the pH dependence of kaolinite surface speciation. The peaks intensity and resolution of the kaolinite decrease according to the alkalinity of the solution by the results of the IR testing. And the peak intensity increases in the 60 to 70$^{\circ}C$ range due to dehydration reaction observed by TG-DTA. Such phenomena was the result of increase of unreacted amorphous materials in the high pH condition, which could be identified by FE-SEM.

Preparation of Na-X and Na-A Zeolites from Coal Fly Ash in a Thermoelectric Power Plant and Comparison of the Adsorption Characteristics for Cu(II) with a Commercial Zeolite (화력발전소 석탄비산재를 이용한 Na-X와 Na-A 제올라이트 제조 및 상업용 제올라이트와의 Cu(II) 흡착 특성 비교)

  • Choi, Yu-Lim;Angaru, Ganesh Kumar Reddy;Kim, Dong-Su;Ahn, Hye-Young;Kim, Dae-Ho;Choi, Chi-Dong;Reddy, Kodoru Janardhan;Yang, Jae-Kyu;Chang, Yoon-Young
    • Applied Chemistry for Engineering
    • /
    • v.30 no.6
    • /
    • pp.749-756
    • /
    • 2019
  • Na-X and Na-A zeolites that give high adsorption capacity for heavy metals in an aqueous system were synthesized from the coal fly ash obtained from a thermoelectric power plant using a fusion method. The characteristics and Cu(II) adsorption capacity of the synthetic zeolites were also compared to those of using a commercial zeolite. For the selection of optimum conditions of zeolite synthesis, the effects of major parameters in the fusion method such as a dosage ratio of NaOH, aging time, hydrothermal reaction time, and also the dosage ratio of NaAlO2 (Na-A) on the characteristics and Cu(II) adsorption capacity of the synthetic zeolites were studied. For the analysis of characteristics of the synthetic zeolites, X-ray diffraction (XRD), cation exchange capacity (CEC), Brunaue-Emmett-Teller (BET) and scanning electron microscopy (SEM) were used. The optimum conditions for the synthesis of zeolites with a high adsorption capacity for cationic heavy metals including Cu(II) were the aging time of 6 h, hydrothermal reaction time of 6 h and NaOH and NaAlO2 dosage ratio of 1.5 and 0.5 (Na-A), respectively. According to the Langmuir isotherm test, maximum Cu(II) adsorption capacities of the synthetic and commercial Na-X and Na-A zeolites were found to be 90.1, 105.26, 102.05, and 109.89 mg/g, respectively. This indicates that the adsorption capacity of synthetic zeolites was comparable to commercial ones. The results of this study also suggest that the coal fly ash can be potentially used as a raw material for the zeolite synthesis.

Synthesis of ZrO2 Nanorods and Their Application as Membrane Materials

  • Kwon, Guk-hyun;Kim, Tae Woo;Lee, Hae In;Cho, Won Chul;Kim, Heeyeon
    • Journal of the Korean Ceramic Society
    • /
    • v.56 no.6
    • /
    • pp.541-548
    • /
    • 2019
  • Zirconia (ZrO2) materials are widely used in a variety of energy systems and devices. When nanorod-shaped ZrO2 is used as energy materials, ionic conductivity and mechanical strength can be improved compared to the characteristics of conventional spherical-shaped nanomaterials. In this study, we synthesized ZrO2 nanorods and investigated the shape change of them depending on various synthesis conditions such as precursor concentration, synthesis temperature, synthesis period, and aging period. The obtained nanorods were casted into a membrane for alkaline water electrolysis system and subjected to basic performance evaluation for use as a separator. The structure and the shape of the nanorods were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), and the like.

A study on the preparation of phosphatic calcium compounds using the shell resources (패각을 이용한 인산칼슘계 화합물의 제조에 관한 연구)

  • 이인곤;김판채
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.10 no.2
    • /
    • pp.171-176
    • /
    • 2000
  • The phosphatic calcium compounds such as calcium hydrogen phosphate, bone ash, hydroxyapatite and tricalcium phosphate were prepared using the high purity calcium hydroxide and calcium carbonate obtained from shell resources. Calcium hydrogen phosphate had been prepared using the high purity calcium hydroxide and phosphoric acid solution. Using the calcium hydrogen phosphate as a starting materials, bone ash have been prepared by solid state reaction method and hydroxyapatite could be obtained by hydrothermal treatment method, respectively. The tricalcium phosphate was prepared by the solid state reaction of a stoichiometic mixture of bone ash and high purity calcium carbonate. In this paper, the optimal preparation process and conditions of phosphatic calcium compounds were established.

  • PDF

Adsorption removal of p-xylene by organo-clays (유기점토를 이용한 p-자일렌 흡착 제거)

  • Cho, Yunchul;Kim, Taesung;Han, Sunkee;Lee, Chaeyoung
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.26 no.6
    • /
    • pp.747-756
    • /
    • 2012
  • The purpose of this study was to investigate adsorption characteristics of organo-clays for removal of p-xylene. As part of efforts to examine the adsorption capacities of some organo-clays for p-xylene, batch isotherm tests were carried out. Organo-clay minerals were synthesized under hydrothermal conditions using Na-montmorillonite as host clay and dimethyldioctadecylammonium (DMDA) bromide and benzyldimethyldodecylammonium (BDDA) chloride as organic surfactants, respectively. All synthetic organo-clay minerals were characterized by powder x-ray diffraction (XRD), scanning electron microscope (SEM) and energy-dispersive x-ray spectroscopy (EDX). The modification using dimethyldioctadecylammonium (DMDA) bromide showed the higher adsorption ability for p-xylene than benzyldimethyldodecylammonium (BDDA) chloride. On the other hand, the maximum adsorption capacity, $Q_{max}$ of DMDA modified montmorillonite estimated by Langmuir model was 27.0 mg/g, which was the higher value than other organo-clays.

Pretreatment on Corn Stover with Low Concentration of Formic Acid

  • Xu, Jian;Thomsen, Mette Hedegaard;Thomsen, Anne Belinda
    • Journal of Microbiology and Biotechnology
    • /
    • v.19 no.8
    • /
    • pp.845-850
    • /
    • 2009
  • Bioethanol derived from lignocellulosic biomass has the potential to replace gasoline. Cellulose is naturally recalcitrant to enzymatic attack, and it also surrounded by the matrix of xylan and lignin, which enhances the recalcitrance. Therefore, lignocellulosic materials must be pretreated to make the cellulose easily degraded into sugars and further fermented to ethanol. In this work, hydrothermal pretreatment on corn stover at $195^{\circ}C$ for 15 min with and without lower concentration of formic acid was compared in terms of sugar recoveries and ethanol fermentation. For pretreatment with formic acid, the overall glucan recovery was 89% and pretreatment without formic acid yielded the recovery of 94%. Compared with glucan, xylan was more sensitive to the pretreatment condition. The lowest xylan recovery of 55% was obtained after pretreatment with formic acid and the highest of 75% found following pretreatment without formic acid. Toxicity tests of liquor parts showed that there were no inhibitions found for both pretreatment conditions. After simultaneous saccharification and fermentation (SSF) of the pretreated corn stover with Baker's yeast, the highest ethanol yield of 76.5% of the theoretical was observed from corn stover pretreated at $195^{\circ}C$ for 15 min with formic acid.