Characterization of the Kaolinite Synthesized According to the pH.

pH에 따른 캐올리나이트 합성과 특성 분석

  • Ryu, Gyoung-Won (Minerals and Materials Processing Division, Korea Institute of Geoscience and Mineral Resources) ;
  • Jang, Young-Nam (Minerals and Materials Processing Division, Korea Institute of Geoscience and Mineral Resources) ;
  • Bae, In-Kook (Minerals and Materials Processing Division, Korea Institute of Geoscience and Mineral Resources) ;
  • Suh, Yong-Jae (Minerals and Materials Processing Division, Korea Institute of Geoscience and Mineral Resources)
  • 류경원 (한국지질자원연구원 자원활용소재연구부) ;
  • 장영남 (한국지질자원연구원 자원활용소재연구부) ;
  • 배인국 (한국지질자원연구원 자원활용소재연구부) ;
  • 서용재 (한국지질자원연구원 자원활용소재연구부)
  • Published : 2008.04.28

Abstract

Kaolinite [$Al_2Si_2O_5(OH)_4$] used in these experiments was synthesized at 250$^{\circ}C$ for 36 hrs by a hydrothermal process from amorphous $Al(OH)_3$ and $SiO_2$. The change of the mineralogical properties of the phase synthesized were observed in the pH range 2 to 9. The synthetic kaolinite were characterized by the analytical methods of XRD, IR, DIA, and FE-SEM. Kaolinite was obtained in a wide range of pH. The phases with high- to midium- defect kaolinite with high thermal stability were obtained from the acidic conditions and high-defect kaolinite with low thermal stability from the basic conditions. These variations of kaolinite properties appears to be related to the pH dependence of kaolinite surface speciation. The peaks intensity and resolution of the kaolinite decrease according to the alkalinity of the solution by the results of the IR testing. And the peak intensity increases in the 60 to 70$^{\circ}C$ range due to dehydration reaction observed by TG-DTA. Such phenomena was the result of increase of unreacted amorphous materials in the high pH condition, which could be identified by FE-SEM.

비정질 $SiO_2$$Al(OH)_3$를 출발물질로 이용하여 250$^{\circ}C$, $30kg/cm^2$의 조건에서 pH를 2${\sim}$9까지 변화시키면서 캐올리나이트를 수열합성하였다. 합성 캐올리나이트는 XRD, FT-IR, TG, DTA, 및 FE-SEM을 사용하여 광물학적 특성 분석을 실시하였으며, 이로부터 캐올리나이트 합성시 pH의 변화에 따른 영향력을 관찰하였다. 실험결과, 산성조건에서 중-저 결함도와 높은 열적 안정성을 갖는 양호한 캐올리나이트가 합성되었으며, 알카리성 조건에서는 결함이 많은 캐올리나이트가 합성되었다. 이러한 현상은 합성 캐올리나이트의 표면특성이 pH에 의존하기 때문인 것으로 보인다. FT-IR 분석결과, 반응용액의 알칼리도가 증가함에 따라 합성 캐올리나이트의 피크 강도와 분해도가 감소되었으며, TG-DTA 분석결과, 60-70$^{\circ}C$의 저온영역에서의 탈수현상에 의한 피크 강도 증가가 관찰되었다. 이러한 결과는 pH의 증가에 따라 반응에 참여하지 못한 비정질 물질의 양이 증가하기 때문이며 FE-SEM 분석에 의해 확인되었다.

Keywords

References

  1. Brindly, G.W., Santos, P.S., and Santos, H.S. (1963) Mineralogical studies of kaolinite-halloysite clays: Part I. Identification problems. The American Mineralogist, v. 48, p. 897-910
  2. Brindly, G.W. and Porter, A.R.D. (1978) Occurence of dickite in Jamaica-ordered and disordered varieties. American Mineralogist, v. 63, p. 554-562
  3. Brindley, G.W., Kao, C.-C., Harrison., J.L.,Lipsicas, M., and Raythatha, R.(1986) Realation between structural disorder and other characteristics of kaolinites and dickites. Clays and Clay Minerals, v. 34, p. 239-249 https://doi.org/10.1346/CCMN.1986.0340303
  4. Brunauer, S., Emmett, P.H., and Teller, E. (1938) Adsorption of gases in multi-molecular layers. Journal of American society, v. 60, p. 309-319 https://doi.org/10.1021/ja01269a023
  5. Calvert, C.S. (1981) Chemistry and mineralogy of ironsubstituted kaolinite in natural and synthetic systems. Ph.D. thesis, Texas A&M university, Texas, USA, p. 224
  6. De Kimpe, C., Gastuche, M.C., and Brindley, G.W. (1964) Low-temperature syntheses of kaolin minerals. American Mineralogist, v. 49, p. 1-16
  7. Eberl D, Hower J. (1975) Kaolinite synthesis: The role of the Si/Al and (alkali)$(H^{+})$ ratio in hydrothermal systems. Clays and Clay Minerals, v. 23, p. 301-309 https://doi.org/10.1346/CCMN.1975.0230406
  8. Fialips, C.I., Petit, S., Decarreau, A., and Beaufort, D. (2000) Influence of synthesis pH on kaolinite 'crsytallinity' and surface properties. Clays and Clay Minerals, v. 48, p. 173-184 https://doi.org/10.1346/CCMN.2000.0480203
  9. Fiore, S., Huertas, F.J., Huertas, F. and Linares, J. (1995) Morphology of kaolinite crystals synthesized under hydrothermal conditions. Clays and Clay Minerals, v. 43, p. 353-360 https://doi.org/10.1346/CCMN.1995.0430310
  10. Hinkley, D.N. (1963) Variability in crystallinity values among the kaolin deposits of the coastal plain of Georgia and South Carolina. Clays and Clay Minerals, v. 11, p. 229-235 https://doi.org/10.1346/CCMN.1962.0110122
  11. Jang, Y.S., Ryu, K.W., Bae, I.K., Chae, S.C., Lee, S.K., Suh, Y.J. (2007) Hydrothermal synthesis of kaolinite. Journal of The Mineralogical Society of Korea, v. 20, p. 147-153
  12. Petit, S., Decarreau, A., Mosser, C., Ehret, G., and Grauby, O. (1995) Hydrothermal synthesis $(250^{\circ}C)$ of copper-substituted kaolinites. Clays and Clay Minerals, v. 43, p. 482-494 https://doi.org/10.1346/CCMN.1995.0430413
  13. Plancon, A., and Tchoubar, C. (1977) Determination of structural defects in phyllosilicates by X-ray powder diffraction II. Nature and proportion of defects in natural kaolinites. Clays and Clay Minerals, v. 25, p. 436-450 https://doi.org/10.1346/CCMN.1977.0250610
  14. Plancon, A., Giese, R.F., and Snyder, R. (1988) The Hinckley index for kaolinites. Clay Minerals, v. 23, p. 249-260 https://doi.org/10.1180/claymin.1988.023.3.02
  15. La Iglesia Fernandez, A. and Martin Vivaldi, J.L. (1973) A contribution to the synthesis of kaolinite. In Proceedings of the International Clay Conference, Madrid, 1972, J.M. Serratosa and A. Sanchez, eds., Division de Ciensas, Madrid, p. 173-184
  16. Lietard, O. (1977) Contribution a I'etude des proprietes physicochimiques, cristallographiques et morphologisques des kaolins. Ph. D. thesis, University Nancy, Nancy, France, p. 322
  17. Moon, H.S. (1996), Clay Mineralogy. Min Eum Sa, 649p
  18. Satokawa, S., Osaki, Y., Samejima, S., Miyawaki, R., Tomura, S., Shibasaki, Y., and Sugahara, Y. (1994) Effects of the structure of silica-alumina gel on the hydrothermal synthesis of kaolinite. Clays and Clay Minerals, v. 42, p. 288-297 https://doi.org/10.1346/CCMN.1994.0420307
  19. Satokawa, S., Miyawaki, R., Osaki, Y., Tomura, S., and Shibasaki, Y. (1996) Effects of acidity on the hydrothermal synthesis of kaolinite from silica-gel and gibbsite. Clays and Clay Minerals, v. 44, p. 417-423 https://doi.org/10.1346/CCMN.1996.0440311
  20. Tsuzuku, Y., and Miyawaki, S. (1971) A study of rock alteration process based on kinetics of hydrothermal experiments. Contrib. Miner. Petrol. 30, 15-33
  21. Vempati, R.K., Mollah, M.Y.A., Reddy, G.R., Cocke, D.L., and Lauer, Jr., H.V. (1996) Intercalation of kaolinite under hydrothermal conditions, p. 1255-1259