DOI QR코드

DOI QR Code

화력발전소 석탄비산재를 이용한 Na-X와 Na-A 제올라이트 제조 및 상업용 제올라이트와의 Cu(II) 흡착 특성 비교

Preparation of Na-X and Na-A Zeolites from Coal Fly Ash in a Thermoelectric Power Plant and Comparison of the Adsorption Characteristics for Cu(II) with a Commercial Zeolite

  • 투고 : 2019.11.21
  • 심사 : 2019.11.27
  • 발행 : 2019.12.10

초록

본 연구에서는 화력발전소에서 채취한 석탄 비산재(coal fly ash)로부터 fusion method를 이용하여 중금속 흡착 성능이 뛰어난 Na-X과 Na-A 제올라이트를 합성하였다. 또한 이를 이용하여 Cu(II) 흡착 성능을 상업용 Na-X 및 Na-A 제올라이트와 비교하였다. 제올라이트의 최적 합성 조건을 선정하기 위해 fusion method의 주요 영향인자인 NaOH 주입비율, 숙성시간(aging time), 수열반응 시간(hydrothermal reaction time), NaAlO2 (Na-A) 주입비율의 변화에 의한 제올라이트의 특성을 고찰하였다. 그리고 XRD, CEC, BET, SEM 분석을 실시하였으며, 최적의 제올라이트 합성 조건은 NaOH 주입 비율 = 1.5, 숙성시간 = 6 h, 수열반응 시간 = 6 h, NaAlO2 (Na-A) 주입 비율 = 0.5인 것으로 확인되었다. Langmuir 등온 흡착곡선의 분석결과, Cu(II)에 대한 최대 흡착 농도는 합성된 Na-X와 Na-A 제올라이트의 경우 각각 90.1와 105.26 mg/g, 상업용 Na-X와 Na-A 제올라이트의 경우 각각, 102.05와 109.89 mg/g으로 나타나 Cu(II) 흡착 성능에 있어서 합성 제올라이트와 상업용 제올라이트가 유사한 결과를 보여주었다. 따라서 본 실험의 결과들은 화력발전소 석탄 비산재의 제올라이트 합성 재료로서의 활용 가능성을 나타내었다.

Na-X and Na-A zeolites that give high adsorption capacity for heavy metals in an aqueous system were synthesized from the coal fly ash obtained from a thermoelectric power plant using a fusion method. The characteristics and Cu(II) adsorption capacity of the synthetic zeolites were also compared to those of using a commercial zeolite. For the selection of optimum conditions of zeolite synthesis, the effects of major parameters in the fusion method such as a dosage ratio of NaOH, aging time, hydrothermal reaction time, and also the dosage ratio of NaAlO2 (Na-A) on the characteristics and Cu(II) adsorption capacity of the synthetic zeolites were studied. For the analysis of characteristics of the synthetic zeolites, X-ray diffraction (XRD), cation exchange capacity (CEC), Brunaue-Emmett-Teller (BET) and scanning electron microscopy (SEM) were used. The optimum conditions for the synthesis of zeolites with a high adsorption capacity for cationic heavy metals including Cu(II) were the aging time of 6 h, hydrothermal reaction time of 6 h and NaOH and NaAlO2 dosage ratio of 1.5 and 0.5 (Na-A), respectively. According to the Langmuir isotherm test, maximum Cu(II) adsorption capacities of the synthetic and commercial Na-X and Na-A zeolites were found to be 90.1, 105.26, 102.05, and 109.89 mg/g, respectively. This indicates that the adsorption capacity of synthetic zeolites was comparable to commercial ones. The results of this study also suggest that the coal fly ash can be potentially used as a raw material for the zeolite synthesis.

키워드

참고문헌

  1. J. H. Maeng, T. Y. K., and D. H. Seo, Minimizing environmental impact in accordance with the thermal power plant ash management(I), Research Report 2014-02-01, Korea Environment Institute (KEI) (2014).
  2. X. Sun, X. Li, X. Zhao, B. Zhu, and G. Zhang, A review on the management of municipal solid waste fly ash in American, Procedia Environmental Sciences, 31, 535-540 (2016). https://doi.org/10.1016/j.proenv.2016.02.079
  3. K. B. Jones, L. F. Ruppert, and S. M. Swanson, Leaching of elements from bottom ash, economizer fly ash, and fly ash from two coal-fired power plants, International Journal of Coal Geology, 94, 337-348 (2012). https://doi.org/10.1016/j.coal.2011.10.007
  4. H. Holler and U. Wirsching, Zeolite formation from fly ash, Fortschritte der Mineralogie, 63(1), 21-43 (1985).
  5. N. Koshy and D. N. Singh, Fly ash zeolites for water treatment applications, Journal of Environmental Chemical Engineering, 4(2), 1460-1472 (2016). https://doi.org/10.1016/j.jece.2016.02.002
  6. D. W. Breck, Zeolite Molecular Sieves, John Wiley & Sons, New York, USA (1974).
  7. G. G. Hollman, G. Steenbruggen, and M. Janssen-Jurkovicova, A two-step process for the synthesis of zeolites from coal fly ash, Fuel, 78(10), 1225-1230 (1999). https://doi.org/10.1016/S0016-2361(99)00030-7
  8. W. Franus, Wdowin, M., and Franus, M., Synthesis and characterization of zeolites prepared from industrial fly ash, Environmental Monitoring and Assessment, 186(9), 5721-5729 (2014). https://doi.org/10.1007/s10661-014-3815-5
  9. R. Petrus and J. K. Warchol, Heavy metal removal by clinoptilolite. An equilibrium study in multi-component systems, Water Research, 39(5), 819-830 (2005). https://doi.org/10.1016/j.watres.2004.12.003
  10. M. Nascimento, P. S. M. Soares, and V. P. d. Souza, Adsorption of heavy metal cations using coal fly ash modified by hydrothermal method, Fuel, 88(9), 1714-1719 (2009). https://doi.org/10.1016/j.fuel.2009.01.007
  11. N. Shigemoto, H. Hayashi, and K. J. J. o. M. S. Miyaura, Selective formation of Na-X zeolite from coal fly ash by fusion with sodium hydroxide prior to hydrothermal reaction, Journal of Materials Science, 28(17), 4781-4786 (1993). https://doi.org/10.1007/BF00414272
  12. T. V. Ojumu, P. W. Du Plessis, and L. F. Petrik, Synthesis of zeolite A from coal fly ash using ultrasonic treatment - A replacement for fusion step, Ultrasonics Sonochemistry, 31, 342-349 (2016). https://doi.org/10.1016/j.ultsonch.2016.01.016
  13. J. P. Brassell, T. V. Ojumu, and L. F. Petrik, Upscaling of Zeolite Synthesis from Coal Fly Ash Waste: Current Status and Future Outlook, Intech Open, DOI:10.5772/63792 (2016).
  14. J. d. C. Izidoro, D. A. Fungaro, J. E. Abbott, and S. Wang, Synthesis of zeolites X and A from fly ashes for cadmium and zinc removal from aqueous solutions in single and binary ion systems, Fuel, 103, 827-834 (2013). https://doi.org/10.1016/j.fuel.2012.07.060
  15. C. Wang, J. Li, X. Sun, L. Wang, and X. Sun, Evaluation of zeolites synthesized from fly ash as potential adsorbents for wastewater containing heavy metals, Journal of Environmental Sciences, 21(1), 127-136 (2009). https://doi.org/10.1016/S1001-0742(09)60022-X
  16. H.-L. Chang and W.-H. Shih, Synthesis of zeolites A and X from fly ashes and their ion-exchange behavior with cobalt ions, Industrial & Engineering Chemistry Research, 39(11), 4185-4191 (2000). https://doi.org/10.1021/ie990860s
  17. Y. Shaoyong, Z. Ting'an, C. Chu, Z. Xianqi, S. Junmin, L. Guozhi, and Y. Huibin, Preparation of zeolite 4A by using high-alumina coal fly ash, in: M. Hyland (ed.), Light Metals 2015, 121-126, Springer International Publishing: Cham (2016).
  18. K. Ojha, N. C. Pradhan, and A. N. J. B. o. M. S. Samanta, Zeolite from fly ash: Synthesis and characterization, Bulletin of Materials Science, 27(6), 555-564 (2004). https://doi.org/10.1007/BF02707285
  19. Z. T. Yao, M. S. Xia, Y. Ye, and L. Zhang, Synthesis of zeolite Li-ABW from fly ash by fusion method, Journal of Hazardous Materials, 170(2), 639-644 (2009). https://doi.org/10.1016/j.jhazmat.2009.05.018
  20. C. Wang, J. Li, L. Wang, X. Sun, and J. Huang, Adsorption of dye from wastewater by zeolites synthesized from fly ash: Kinetic and equilibrium studies, Chinese Journal of Chemical Engineering, 17(3), 513-521 (2009). https://doi.org/10.1016/S1004-9541(08)60239-6
  21. A. Molina and C. Poole, A comparative study using two methods to produce zeolites from fly ash, Minerals Engineering, 17(2), 167-173 (2004). https://doi.org/10.1016/j.mineng.2003.10.025
  22. L. P. van Reeuwijk, Procedures for Soil Analysis, International Soil Reference and Information Centre, Wageningen, Netherlands (1993).
  23. J. Xie, Z. Wang, D. Wu, Z. Zhang, and H. Kong, Synthesis of zeolite/aluminum oxide hydrate from coal fly ash: A new type of adsorbent for simultaneous removal of cationic and anionic pollutants, Industrial & Engineering Chemistry Research, 52(42), 14890-14897 (2013). https://doi.org/10.1021/ie4021396
  24. S. Sutarno and Y. Arryyanto, Synthesis of Faujasite from Fly Ash and its Applications for Hydrocracking of Petroleum Distillates, Bulletin of Chemical Reaction Engineering & Catalysis, 2, 41-45 (2007).
  25. S. X. Bai, L. M. Zhoi, Z. B. Chang, C. Zhang, and M. Chu, Synthesis of Na-X zeolite from Longkou oil shale ash by alkaline fusion hydrothermal method, Carbon Resources Conversion, 1(3), 245-250 (2018). https://doi.org/10.1016/j.crcon.2018.08.005
  26. W. Qiu and Y. Zheng, Removal of lead, copper, nickel, cobalt, and zinc from water by a cancrinite-type zeolite synthesized from fly ash, Chemical Engineering Journal, 145(3), 483-488 (2009). https://doi.org/10.1016/j.cej.2008.05.001
  27. G. Giannetto, A. Montes, and G. J. C. Rodriguez, Zeolitas: Caracteristicas, Propiedades y Aplicaciones Industriales, Editorial Innovacion Tecnologica, Caracas, Venezuela (1990).
  28. L. Bieseki, F. G. Penha, and S. B. C. Pergher, Zeolite A synthesis employing a brazilian coal ash as the silicon and aluminum source and its applications in adsorption and pigment formulation, J. Materials Research, 16, 38-43 (2013).
  29. G. N. Muriithi, L. F. Petrik, and F. J. Doucet, Synthesis, characterisation and $CO_2$ adsorption potential of NaA and NaX zeolites and hydrotalcite obtained from the same coal fly ash, Journal of $CO_2$ Utilization, 36, 220-230 (2020). https://doi.org/10.1016/j.jcou.2019.11.016
  30. Z. Zou, Z. Shi, and L. Deng, Highly efficient removal of Cu(ii) from aqueous solution using a novel magnetic EDTA functionalized $CoFe_2O_4$, RSC Advances, 7(9), 5195-5205 (2017). https://doi.org/10.1039/C6RA26821H
  31. X. S. Wang, L. Zhu, and H.J. Lu, Surface chemical properties and adsorption of Cu (II) on nanoscale magnetite in aqueous solutions, Desalination, 276(1), 154-160 (2011). https://doi.org/10.1016/j.desal.2011.03.040
  32. G. Zhao, H. Zhang, Q. Fan, J. Li, Y. Chen, and X. Wang, Sorption of copper(II) onto super-adsorbent of bentonite-polyacrylamide composites, Journal of Hazardous Materials, 173(1), 661-668 (2010). https://doi.org/10.1016/j.jhazmat.2009.08.135
  33. K. S. Hui, C. Y. H. Chao, and S. C. Kot, Removal of mixed heavy metal ions in wastewater by zeolite 4A and residual products from recycled coal fly ash, Journal of Hazardous Materials, 127(1), 89-101 (2005). https://doi.org/10.1016/j.jhazmat.2005.06.027
  34. M. G. Lee, G. Yi, B. J. Ahn, and F. Roddick, Conversion of coal fly ash into zeolite and heavy metal removal characteristics of the products, Korean Journal of Chemical Engineering, 17(3), 325-331 (2000). https://doi.org/10.1007/BF02699048
  35. S. Wang, M. Soudi, L. Li, and Z. H. Zhu, Coal ash conversion into effective adsorbents for removal of heavy metals and dyes from wastewater, Journal of Hazardous Materials, 133(1), 243-251 (2006). https://doi.org/10.1016/j.jhazmat.2005.10.034
  36. R. Apiratikul and P. Pavasant, Sorption of $Cu^{2+}$, $Cd^{2+}$, and $Pb^{2+}$ using modified zeolite from coal fly ash, Chemical Engineering Journal, 144(2), 245-258 (2008). https://doi.org/10.1016/j.cej.2008.01.038